Ukr.Biochem.J. 2014; Volume 86, Issue 1, Jan-Feb, pp. 42-55


Investigation of nitrosactive compounds influence on polarization of the mitochondrial inner membrane in the rat uterus myocytes using potential sensitive fluorescent probe DіOC(6)(3)

Yu. V. Danylovych, H. V. Danylovych, O. V. Kolomiets, S. O. Kosterin, S. A. Karakhim, A. Yu. Chunikhin

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;

The effect of nitrosactive compounds (sodium nitroprusside and sodium nitrite) on the polarization level of the uterus myocytes inner mitochondrial membrane using the confocal laser microscopy and fluorescent probe potentialsensitive DiOC6(3) (3,3′-dihexyloxacarbocyanine) was ivestigated. Colocalisation of mitochondrial membranes specific fluorescent probes (MitoTracker Orange CM H2TMRos­, 10 – nonyl acridine orange and DiOC6(3)) was demon­strated. It was shown that sodium nitroprusside at 0.1 mM concentration caused a moderate decrease in mitochondrial transmembrane potential. That observation was confirmed by flow cytometry. Action efficiency of sodium nitrite in a similar concentration was significantly lower than that of sodium nitroprusside. It is shown that it was sodium nitroprusside which caused a slight swelling of the mitochondria. A possible protecting role of nitric oxi­de as to mitochondria was discussed.

Keywords: , , , ,


  1. Kostiuk PH, Kostiuk OP, Lukianets OO. Intracellular calcium signaling : structure and functions. K.: Nauk. Dumka, 2010. 175 p.
  2. Kandaurova NV. Ca2+-induced changes in mitochondrial membrane potential of rat myometrium: Avtoref. dis … kand. biol. nauk.  2011.  20 p.
  3. Naumova NV, Babich LG, Shlykov SG. Changes of mitochondria membrane potential of the uterus smooth muscle under Mg2+ and Ca2+ influence. Ukr Biokhim Zhurn. 2009 Jul-Aug;81(4):28–31. PubMed
  4. Burlaka A.P., Sydoryk Ie.P. Nitric oxide and oxygen radicals in tumor process. K.: Nauk. Dumka, 2006. 227 p.
  5. Duchen MR. Roles of mitochondria in health and disease. Diabetes. 2004 Feb;53 Suppl 1:S96-102. Review. PubMed
  6. Feissner RF, Skalska J, Gaum WE, Sheu SS. Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci (Landmark Ed). 2009 Jan 1;14:1197-218. Review. PubMed, PubMedCentral
  7. Graier WF, Frieden M, Malli R. Mitochondria and Ca(2+) signaling: old guests, new functions. Pflugers Arch. 2007 Dec;455(3):375-96. Epub 2007 Jul 5. Review.  PubMed
  8. Kosterin S.O., Burdyha F.V. Ca2+ transport and intracellular homeostasis in the myometrium. Uspekhi Sovremennoi Biologii. 1993;113(4):485-506.
  9. Shinlova OP, Kosterin SA, Veklich TA. Ruthenium red inhibits energy-dependent and passive Ca2+ transport in permeabilized smooth muscle cells. Biokhimiia. 1996 Aug;61(8):1440-7. PubMed
  10. Babich LG, Shlykov SG, Naumova NV, Kosterin SO. Use of flow cytometry method to determine Ca2+ content in mitochondria and influence of calmodulin antagonists on it.  Ukr. Biokhim. Zhurn. 2008;80(4):51–58. PubMed
  11. Feissner RF, Skalska J, Gaum WE, Sheu SS. Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci (Landmark Ed). 2009 Jan 1;14:1197-218. Review. PubMed, PubMedCentral
  12. Malli R, Graier WF. Mitochondrial Ca2+ channels: Great unknowns with important functions. FEBS Lett. 2010 May 17;584(10):1942-7. Review. PubMed, PubMedCentral, CrossRef
  13. Santo-Domingo J, Demaurex N. Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):907-12. Review. PubMed, CrossRef
  14. Bryan NS, Bian K, Murad F. Discovery of the nitric oxide signaling pathway and targets for drug development. Front Biosci (Landmark Ed). 2009 Jan 1;14:1-18. Review. PubMed
  15.  Seraya IP, Nartsissov YR. A modern understanding of the biological role of nitrogen oxide. Uspekhi Sovremennoi Biologii. 202;122(3):249–258.
  16. Turpaev KT. Reactive oxygen species and regulation of gene expression. Biochemistry (Mosc). 2002 Mar;67(3):281-92. PubMed
  17. Giulivi C, Kato K, Cooper CE. Nitric oxide regulation of mitochondrial oxygen consumption I: cellular physiology. Am J Physiol Cell Physiol. 2006 Dec;291(6):C1225-31. Review. PubMed
  18. Davidson SM, Duchen MR. Effects of NO on mitochondrial function in cardiomyocytes: Pathophysiological relevance. Cardiovasc Res. 2006 Jul 1;71(1):10-21. Epub 2006 Mar 3. Review.   PubMed
  19. Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase. Trends Pharmacol Sci. 2005 Apr;26(4):190-5. PubMed
  20. Danylovych GV, Danylovych YuV, Gorchev VF. Comparative investigation by spectrofluorimetry and flow cytometry of plasma and inner mitoc hondrial membranes polarisation in smoo the muscle cell using potential-sensitive probe DiOC6(3). Ukr Biokhim Zhurn. 2011;83(3):99–105. PubMed
  21. Mollard P, Mironneau J, Amedee T, Mironneau C. Electrophysiological characterization of single pregnant rat myometrial cells in short-term primary culture. Am J Physiol. 1986 Jan;250(1 Pt 1):C47-54. PubMed
  22. Danylovych GV, Danylovych YuV, Kolomiets OV, Kosterin SO, Rodik RV, Cherenok SO, Kalchenko VI, Сhunikhin AJu, Gorchev VF, Karakhim S.. Changes in polarization of myometrial cells plasma and internal mitochondrial membranes under calixarenes action as inhibitors of plasma membrane Na+, K+-ATP ase. Ukr Biokhim Zhurn. 2012;84(6):37-48. PubMed
  23. Danylovych YuV, Сhunikhin AJu, Danylovych GV. Current problems of bophysics and chemistry. Materials from VII Int. Sci. Techn. Confer. Sevastopol, 2011: 46–47.
  24. Rottenberg H, Wu S. Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim Biophys Acta. 1998 Sep 16;1404(3):393-404. PubMed
  25. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997 Jul 7;411(1):77-82. PubMed
  26. Marchetti C, Jouy N, Leroy-Martin B, Defossez A, Formstecher P, Marchetti P. Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Hum Reprod. 2004 Oct;19(10):2267-76. PubMed
  27. Kalbácová M, Vrbacký M, Drahota Z, Melková Z. Comparison of the effect of mitochondrial inhibitors on mitochondrial membrane potential in two different cell lines using flow cytometry and spectrofluorometry. Cytometry A. 2003 Apr;52(2):110-6. PubMed
  28. Brewis IA, Morton IE, Mohammad SN, Browes CE, Moore HD. Measurement of intracellular calcium concentration and plasma membrane potential in human spermatozoa using flow cytometry. J Androl. 2000 Mar-Apr;21(2):238-49. PubMed
  29. Buckman JF, Hernández H, Kress GJ, Votyakova TV, Pal S, Reynolds IJ. MitoTracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potential and oxidants. J Neurosci Methods. 2001 Jan 15;104(2):165-76. PubMed
  30. Garcia Fernandez MI, Ceccarelli D, Muscatello U. Use of the fluorescent dye 10-N-nonyl acridine orange in quantitative and location assays of cardiolipin: a study on different experimental models. Anal Biochem. 2004 May 15;328(2):174-80. PubMed
  31. Evron Y, McCarty RE. Simultaneous measurement of deltapH and electron transport in chloroplast thylakoids by 9-aminoacridine fluorescence. Plant Physiol. 2000 Sep;124(1):407-14. PubMed, PubMedCentral
  32. Akopova OV, Sagach VF. Effect of nitric oxide donors on Ca2+-uptake in the rat heart and liver mitochondria. Ukr Biokhim Zhurn. 2005 Mar-Apr;77(2):82-7. PubMed
  33. Kandaurova NV, Chunikhin AJu, Babich LG, Shlykov SG, Kosterin SO. Modulators of transmembrane calcium exchange in myometrium mitochondria change their hydrodynamic diameter. Ukr Biokhim Zhurn. 2010 Nov-Dec;82(6):52-7. PubMed
  34. Ponomarenko OV, Babich LH, Horchev VF, Kosterin SO. Studies of Ca2+ -dependent smooth muscle mitochondria swelling using flow cytometry and spermine effects on this process. Ukr Biokhim Zhurn. 2006 Nov-Dec;78(6):38-45. PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.