Ukr.Biochem.J. 2014; Volume 86, Issue 5, Sep-Oct, pp. 37-46

doi: https://doi.org/10.15407/ubj86.05.037

Kinetics of inhibitory effect of calix[4]arene С-90 on activity of transporting plasma membrane Cа(2+),Mg(2+)-ATPase of smooth muscle cells

T. O. Veklich1, A. A. Shkrabak1, Yu. Yu. Mazur1,
R. V. Rodik2, V. I. Kalchenko2, S. O. Kosterin1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: kinet@biochem.kiev.ua; vik@ioch.kiev.ua

In experiments on the suspension of myometrium cell plasma membrane, processed by 0.1% digitonin, the inhibitory action of calix[4]arene C-90 (5,11,17,23-tetra(threeftor)methyl(phenilsulphonilimino)-methylamino-25,26, 27,28-tetrapropoxy-calix[4]arene) on the activi­ty of Ca2+,Mg2+-ATPase was investigated. The authors also examined the influence of calix[4]arene in different concentration on affinity of enzyme (Ca2+,Mg2+-ATPase) for the ATP and ions of Mg and Ca, and its influence on cooperative effect and maximum velocity of ATP hydrolysis. It is shown that calix[4]arene does not influence the affinity of Ca2+,Mg2+-ATPase for the ATP, which means that these two compounds have different binding centers­. Also calix[4]arene has no influence on affinity and cooperative effect of Ca ions, if it is used in concentration lower than 50 µM. Calix[4]arene slightly increases coefficient of Ca2+,Mg2+-ATPase activation by magnesium chloride. In all three cases, where ATP, Mg and Ca ions are used to test the impact of calix[4]arene, maximum velocity of ATP hydrolysis significantly decreases. All these results clarify that calix[4]arene implements its inhibitory action through mechanism of uncompetitive inhibition of Ca2+,Mg2+-ATPase activity.

Keywords: , , , , , , ,


References:

  1. Austin C, Wray S. Interactions between Ca(2+) and H(+) and functional consequences in vascular smooth muscle. Circ Res. 2000 Feb 18;86(3):355-63. Review. PubMed, CrossRef
  2. Brini M, Carafoli E. Calcium pumps in health and disease. Physiol Rev. 2009 Oct;89(4):1341-78. Review. PubMed, CrossRef
  3. Burdyga T., Paul R. J. Chapter 86 – Calcium homeostasis and signaling in smooth Muscle. Muscle. Fundamental Biology and Mechanisms of Disease. Edited by J. A. Hill and E. N. Olson. Elsevier Inc. 2012;2:1155-1171.
  4. Fafula RV, Efremova UP, Vorobets ZD. Characteristics of Ca2+, Mg2+-ATPases of peripheral blood lympohocytes of patients with rheumatic pathology. Ukr. Biokhim. Zhurn. 2012; 84(6):115-123. (In Ukrainian). PubMed
  5. Kosterin S. O. Kinetics and energetics of Mg2+,ATP-dependent Ca2+ transport in the plasma membrane of smooth muscle cells. Neurophysiology. 2003;35(3-4):187-200. CrossRef
  6. Koide M, Nystoriak MA, Brayden JE, Wellman GC. Impact of subarachnoid hemorrhage on local and global calcium signaling in cerebral artery myocytes. Acta Neurochir Suppl. 2011;110(Pt 1):145-50. PubMedPubMedCentralCrossRef
  7. Carafoli E, Brini M. Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Curr Opin Chem Biol. 2000 Apr;4(2):152-61. Review. PubMed, CrossRef
  8. Pestov NB, Shakhparanov MI, Dmitriev RI. Regulation of Ca2+-ATPase activity. Biol Chem Rev. 2003;43:99-138.
  9. Vats IuO, Klevets’ MIu, Fedirko NV. Kinetic characteristics of Ca2+, Mg2+-ATPases in cells of the submandibular salivary gland of rats. Ukr Biokhim Zhurn. 2004 Nov-Dec;76(6):44-54. Ukrainian. PubMed
  10. Rosa AO, Yamaguchi N, Morad M. Mechanical regulation of native and the recombinant calcium channel. Cell Calcium. 2013 Apr;53(4):264-74. Epub 2013 Jan 26. PubMed, PubMedCentral, CrossRef
  11. Chen HH, Lin YR, Peng QG, Chan MH. Effects of trichloroethylene and perchloroethylene on muscle contractile responses and epithelial prostaglandin release and acetylcholinesterase activity in swine trachea. Toxicol Sci. 2005 Jan;83(1):149-54. Epub 2004 Oct 20. PubMed, CrossRef
  12. Pande J, Mallhi KK, Grover AK. A novel plasma membrane Ca(2+)-pump inhibitor: caloxin 1A1. Eur J Pharmacol. 2005 Jan 31;508(1-3):1-6. Epub 2005 Jan 4. PubMed, CrossRef
  13. Pande J, Mallhi KK, Grover AK. Role of third extracellular domain of plasma membrane Ca2+-Mg2+-ATPase based on the novel inhibitor caloxin 3A1. Cell Calcium. 2005 Mar;37(3):245-50. PubMed, CrossRef
  14. Szewczyk MM, Pande J, Akolkar G, Grover AK. Caloxin 1b3: a novel plasma membrane Ca(2+)-pump isoform 1 selective inhibitor that increases cytosolic Ca(2+) in endothelial cells. Cell Calcium. 2010 Dec;48(6):352-7. Epub 2010 Nov 18. PubMed, CrossRef
  15. Coleman A. W., Jebors S., Cecillon S., Perret P., Garin D., Marti-Battle D., Moulin M. Toxicity and biodistribution of para-sulfonato-calix[4]-arene in mice. New J. Chem. 2008;32(5):780-782. CrossRef
  16. Da Silva E., Lazar A. N., Coleman A. W. Biopharmaceutical applications of calixarenes. J. Drug Deliv. Sci. Technol. 2004;14(1):3-20. CrossRef
  17. Rodik RV. Application of calixarenes for DNA transfection in cells. Ukr Biokhim Zhurn. 2012 Sep-Oct;84(5):5-15. Review. Ukrainian. PubMed
  18. Veklich ТО, Shkrabak OA, Mazur YuYu, Rodik RV, Boyko VI, Kalchenko VІ, Kosterin SO. Kinetic regularities of calixarene C-90 action on the myometrial plasma membrane Ca2+,Mg2+-ATPase activity and on Ca2+ concentration in unexcited сells of the myometrium. Ukr Biokhim Zhurn. 2013  Jul-Aug;85(4):20-29. (In Ukrainian). PubMed
  19. Rodik R., Boiko V., Danylyuk O., Suwińska K., Tsymbal I., Slinchenko N., Babich L., Shlykov S., Kosterin S., Lipkowski J., Kalchenko V. Calix[4]-arenesulfonylamidines. Synthesis, structure and influence on Mg2+,ATP-dependent calcium pumps. Tetrahedron Letters. 2005 Oct;(46):7459-7462. CrossRef
  20. Veklich ТО, Kosterin SO. Comparative research of properties of Na+,K+-ATPase and Mg2+-ATPase of the plasma membrane of the myometrium. Ukr Biokhim Zhurn. 2005 Mar-Apr;77(2):66-75. (In Ukrainian). PubMed
  21. Kondratiuk TP, Bychenok SF, Prishchepa LA, Babich LG, Kurskiĭ MD. Isolation and characteristics of the plasma membrane fraction from the swine myometrium. Ukr Biokhim Zhurn. 1986 Jul-Aug;58(4):50-6. Russian. PubMed
  22. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72(1-2):248-54. PubMed
  23. Flynn ER, Bradley KN, Muir TC, McCarron JG. Functionally separate intracellular Ca2+ stores in smooth muscle. J Biol Chem. 2001 Sep 28;276(39):36411-8. Epub 2001 Jul 26. PubMed, CrossRef
  24. Valente RC, Capella LS, Monteiro RQ, Rumjanek VM, Lopes AG, Capella MA. Mechanisms of ouabain toxicity. FASEB J. 2003 Sep;17(12):1700-2. Epub 2003 Jul 18. PubMed, CrossRef
  25. Wang H, Haas M, Liang M, Cai T, Tian J, Li S, Xie Z. Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase. J Biol Chem. 2004 Apr 23;279(17):17250-9. Epub 2004 Feb 12. PubMed, CrossRef
  26. Veklich TO, Kosterin SO, Shynlova OP. Cationic specificity of a Ca2+-accumulating system in smooth muscle cell mitochondria. Ukr Biokhim Zhurn. 2002 Jan-Feb;74(1):42-8. Ukrainian. PubMed
  27. Rathbun WB, Betlach MV. Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Anal Biochem. 1969 Apr 4;28(1):436-45. PubMed, CrossRef
  28. Boldyrev AA. Na/K-ATPase as an oligomeric ensemble. Biochemistry (Mosc). 2001 Aug;66(8):821-31. Review. PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.