Ukr.Biochem.J. 2013; Volume 85, Issue 4, Jul-Aug, pp. 104-110


Structural and energetic properties of the four configurations of the А•Т and G•C DNA base pairs

O. O. Brovarets’

Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv;
Research and Educational Center “State Key Laboratory of Molecular and Cell Biology”, Kyiv, Ukraine;
Institute of High Technologies, Taras Shevchenko National University of Kyiv, Ukraine;

Using the methods of non-empirical quantum chemistry at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory it was established for the first time, that Hoogsteen, reverse Hoogsteen, Watson-Crick and reverse Watson-Crick configurations of the A·T and G·C DNA base pairs are isoelectronic and isomorphic structures with similar dynamic properties. Based on these results, non-ionisation mechanism of the Hoogsteen “breathing” of the G·C DNA base pair, namely transformation of the tautomerised (Löwdin’s) G*·C* base pair with Watson-Crick geometry into the Hoogsteen electroneutral G*·C* H base pair stabilized by the three O6H…N4, N3H…N7 and C8H…O2 H-bonds, was postulated. It is suggested that such scenario activates only in those cases, when DNA is not located in aqueous solution, but works together with proteins and cytosine protonation at the N3 atom is precluded.

Keywords: , , , , , ,


  1. Löwdin PO. Proton Tunneling in DNA and its Biological Implications. Rev Mod Phys. 1963 Jul;35(3):724-732. CrossRef
  2. Löwdin PO. Quantum Genetics and the Aperiodic Solid: Some Aspects on the Biological Problems of Heredity, Mutations, Aging, and Tumors in View of the Quantum Theory of the DNA Molecule. Adv Quant Chem. 1966;2:213-360. CrossRef
  3. Watson JD, Crick FHC. Genetical implications of the structure of deoxyribonucleic acid. Nature. 1953 May 30;171(4361):964-7. PubMed, CrossRef
  4. Tchurikov NA, Chistyakova LG, Zavilgelsky GB, Manukhov IV, Chernov BK, Golova YB. Gene-specific silencing by expression of parallel complementary RNA in Escherichia coli. J Biol Chem. 2000 Aug 25;275(34):26523-9. PubMed, CrossRef
  5. Hoogsteen K The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Crystallographica. 1963 Sep;16(9): 907-916. CrossRef
  6. Zagryadskaya EI, Doyon FR, Steinberg SV. Importance of the reverse Hoogsteen base pair 54-58 for tRNA function. Nucleic Acids Res. 2003 Jul 15;31(14):3946-53. PubMed, PubMedCentral, CrossRef
  7. Nikolova EN, Kim E, Wise AA, O’Brien PJ, Andricioaei I, Al-Hashimi HM. Transient Hoogsteen base pairs in canonical duplex DNA. Nature. 2011 Feb 24;470(7335):498-502. PubMed, PubMedCentral, CrossRef
  8. FFrank-Kamenetskii MD. DNA breathes Hoogsteen. Artif DNA PNA XNA. 2011 Jan-Mar; 2(1): 1-3. PubMed, PubMedCentral, CrossRef
  9. Samijlenko SP, Krechkivska OM, Kosach DA, Hovorun D. M. Transitions to high tautomeric states can be induced in adenine by interactions with carboxylate and sodium ions: DFT calculation data. J Mol Struct. 2004 Dec;708(1-3):97-104.  CrossRef
  10. Platonov MO, Samijlenko SP, Sudakov OO, Kondratyuk IV, Hovorun DM. To what extent can methyl derivatives be regarded as stabilized tautomers of xanthine? Spectrochim Acta A Mol Biomol Spectrosc. 2005 Nov;62(1-3):112-4. PubMed, CrossRef
  11. Brovarets’ OO, Yurenko YP, Dubey IYa, Hovorun DM. Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study. J Biomol Struct Dyn. 2012 Apr;29(6):1101-1109.  PubMed, CrossRef
  12. Brovarets’ OO, Hovorun DM. How stable are the mutagenic tautomers of DNA bases? Biopolym Cell. 2010;26(1):72-76.  CrossRef
  13. Brovarets’ OO, Hovorun DM. Stability of mutagenic tautomers of uracil and its halogen derivatives: the results of quantum-mechanical investigation. Biopolym Cell. 2010;26(4):295-298.  CrossRef
  14. Brovarets’ OO, Zhurakivsky RO, Hovorun DM. Is there adequate ionization mechanism of the spontaneous transitions? Quantum-chemical investigation. Biopolym  Cell. 2010;26(5):398-405. CrossRef
  15. Brovarets’ OO, Hovorun DM. IR Vibrational spectra of H-bonded complexes of adenine, 2-aminopurine and 2-aminopurine+ with cytosine and thymine: Quantum-chemical study.  Opt Spectrosc. 2011 Nov;111(5):750-757. CrossRef
  16. Brovarets’ OO, Kolomiets’ IM, Hovorun DM.  Elementary molecular mechanisms of the spontaneous point mutations in DNA: A novel quantum-chemical insight into the classical understanding / In Tomofumi Tada (Ed.), Quantum chemistry – molecules for innovations. Rijeka: In Tech Open Access, 2012. P. 59-102. CrossRef
  17. Brovarets’ OO, Hovorun DM. Can tautomerization of the A·T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. J Biomol Struct Dyn. 2014;32(1):127-54. PubMed, CrossRef
  18.  Brovarets’ OO, Hovorun DM. Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: an exhaustive quantum-chemical analysis. J Biomol Struct Dyn. 2013;31(8):913-36. PubMed, CrossRef
  19. Brovarets’ OO, Zhurakivsky RO, Hovorun DM. The physico-chemical “anatomy” of the tautomerization through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives. J Mol Model. 2013 Oct;19(10):4119-37. PubMed, CrossRef
  20. Kondratyuk IV, Samijlenko SP, Kolomiets’ IM, Hovorun DM. Prototropic molecular–zwitterionic tautomerism of xanthine and hypoxanthine. J Mol Struct. 2000;523(1-3):109-118. CrossRef
  21.  Danilov VI, van Mourik T, Kurita N, Wakabayashi H, Tsukamoto T, Hovorun DM. On the mechanism of the mutagenic action of 5­bromouracil: a DFT study of uracil and 5­bromouracil in a water cluster. J Phys Chem A. 2009 Mar 19;113(11):2233-5. PubMed, CrossRef
  22. Wang W, Hellinga HW, Beese LS. Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proc Natl Acad Sci USA. 2011 Oct 25;108(43):17644-8. PubMed, PubMedCentral, CrossRef
  23. Danilov VI, Anisimov VM, Kurita N, Hovorun D. MP2 and DFT studies of the DNA rare base pairs: The molecular mechanism of the spontaneous substitution mutations conditioned by tautomerism of bases. Chem Phys Lett. 2005 Sep;412(4-6):285-293. CrossRef
  24. Yurenko YP, Zhurakivsky RO, Samijlenko SP, Hovorun DM. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis. J Biomol Struct Dyn. 2011 Aug;29(1):51-65. PubMed, CrossRef
  25. Pelmenschikov A, Hovorun DM, Shishkin OV, Leszczynski J. A density functional theory study of vibrational coupling between ribose and base rings of nucleic acids with ribosyl guanosine as a model system. J Chem Phys. 2000;113(14):5986-5990. CrossRef
  26. Shishkin OV, Pelmenschikov A, Hovorun DM, Leszczynski J. Theoretical analysis of low-lying vibrational modes of free canonical 2-deoxyribonucleosides. Chem Phys. 2000 Oct;260(3):317-325. CrossRef
  27. Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors.  Mol Phys. 1970 Oct;19(4):553-566.  CrossRef
  28. Frisch MJ, Trucks GW, Schlegel HB. et al. Gaussian 09 (Revision B.01). Wallingford CT: Gaussian Int., 2010.
  29. Bader RWF. Atoms in molecules. A quantum theory. Oxford: Clarendon Press, 1990.  436 p.
  30. Keith TA. AIMAll (Version 11.12.19). 2011. Retrieved from
  31. Iogansen AV. Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν(XH) vibration in infrared spectra. Spectrochim Acta Part A. 1999 Jul;55(7-8):1585-1612. CrossRef
  32. Espinosa E, Molins E, Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett. 1998 Mar;285(3-4):170-173. CrossRef
  33. Saenger W. Principles of nucleic acid struc­ture. New York: Springer, 1984. 556p. CrossRef
  34. Sukhodub LF, Yanson IK. Mass spectrometric studies of binding energies for nitrogen bases of nucleic acids in vacuo. Nature. 1976 Nov 18;264(5583):245-7. PubMed, CrossRef
  35. Bondi A. Van der Waals Volumes and Radii. J Phys Chem. 1964 Mar;68(3):441-451. CrossRef
  36. Kaplan I. Intermolecular interactions: Physical picture, computational methods and model potentials. 2006. Chichester: John Wiley & Sons Ltd. 367p. CrossRef
  37. Wächtershäuser G. An all-purine precursor of nucleic acids. Proc Natl Acad Sci USA. 1988 Feb;85(4):1134-5. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.