Ukr.Biochem.J. 2013; Volume 85, Issue 4, Jul-Aug, pp. 98-103


Under what conditions does G•C watson-crick DNA base pair acquire all four configurations characteristic for A•T watson-crick DNA base pair?

O. O. Brovarets’

Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv;
Research and Educational Center “State Key Laboratory of Molecular and Cell Biology”, Kyiv, Ukraine;
Institute of High Technologies, Taras Shevchenko National University of Kyiv, Ukraine;

At the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory it was established for the first time, that the Löwdin’s G*·C* DNA base pair formed by the mutagenic tautomers can acquire, as the A·T Watson-Crick DNA base pair, four biologically important configurations, namely: Watson-Crick, reverse Watson-Crick, Hoogsteen and reverse Hoogsteen. This fact demonstrates rather unexpected role of the tautomerisation of the one of the Watson-Crick DNA base pairs, in particular, via double proton transfer: exactly the G·C→G*·C* tautomerisation allows to overcome steric hindrances for the implementation of the above mentioned configurations. Geometric, electron-topological and energetic properties of the H-bonds that stabilise the studied pairs, as well as the energetic characteristics of the latters are presented.

Keywords: , , , ,


  1. Watson JD, Crick FHC. Genetical implications of the structure of deoxyribonucleic acid. Nature. 1953 May 30;171(4361):964-7. PubMed, CrossRef
  2. Mishchuk YaR, Potyagaylo AL, Hovorun DM. Structure and dynamics of 6-azacytidine by MNDO/H quantum-chemical method. J Mol Struct. 2000;552(1-3):283-289. CrossRef
  3. Brovarets’ OO, Yurenko YP, Dubey IY, Hovorun DM. Can DNA-binding proteins of replisome tautomerize nucleotide bases? Ab initio model study. J Biomol Struct Dyn. 2012;29(6):597-605. PubMed, CrossRef
  4. Brovarets’ OO, Hovorun DM.  Can tautomerization of the A·T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. J Biomol Struct Dyn. 2014;32(1):127-54. PubMed, CrossRef
  5. Brovarets’ OO, Hovorun DM. Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: an exhaustive quantum-chemical analysis. J Biomol Struct Dyn. 2013;31(8):913-36. PubMed, CrossRef
  6. Tchurikov NA, Chistyakova LG, Zavilgelsky GB, Manukhov IV, Chernov BK, Golova YB. Gene-specific silencing by expression of parallel complementary RNA in Escherichia coli. J Biol Chem. 2000 Aug 25;275(34):26523-9. PubMed, CrossRef
  7. Ghosal G, Muniyappa K. Hoogsteen base-pairing revisited: resolving a role in normal biological processes and human diseases. Biochem Biophys Res Commun. 2006 Apr 28;343(1):1-7. Review. PubMed, CrossRef
  8. Seaman FC, Hurley L. Interstrand cross-linking by bizelesin produces a Watson-Crick to Hoogsteen base-pairing transition region in d(CGTAATTACG)2. Biochemistry. 1993 Nov 30;32(47):12577-85. PubMed, CrossRef
  9. Aishima J, Gitti RK, Noah JE, Gan HH, Schlick T, Wolberger C. A Hoogsteen base pair embedded in undistorted B-DNA. Nucleic Acids Res. 2002 Dec 1;30(23):5244-52. PubMed, PubMedCentral, CrossRef
  10. Nikolova EN, Kim E, Wise AA, O’Brien PJ, Andricioaei I, Al-Hashimi HM. Transient Hoogsteen base pairs in canonical duplex DNA. Nature. 2011 Feb 24;470(7335):498-502.  PubMed, PubMedCentral, CrossRef
  11. Hoogsteen K The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Crystallographica. 1963 Sep;16(9): 907-916. CrossRef
  12. Zagryadskaya EI, Doyon FR, Steinberg SV. Importance of the reverse Hoogsteen base pair 54-58 for tRNA function. Nucleic Acids Res. 2003 Jul 15;31(14):3946-53. PubMed, PubMedCentral, CrossRef
  13. Haschemeyer AE, Sobell HM. The crystal structure of an intermolecular nucleoside complex: adenosine and 5-bromouridine. Proc Natl Acad Sci USA. 1963 Nov;50(5):872-7. PubMed, PubMedCentral, CrossRef
  14.  Löwdin PO. Proton Tunneling in DNA and its Biological Implications. Rev Mod Phys. 1963 Jul;35(3):724-732. CrossRef
  15. Löwdin PO. Quantum Genetics and the Aperiodic Solid: Some Aspects on the Biological Problems of Heredity, Mutations, Aging, and Tumors in View of the Quantum Theory of the DNA Molecule. Adv Quant Chem. 1966;2:213-360. CrossRef
  16. Brovarets’ OO, Kolomiets’ IM, Hovorun DM. / In Tomofumi Tada (Ed.), Quantum chemistry – molecules for innovations. Rijeka: In Tech Open Access, 2012. P. 59-102. CrossRef
  17. Kondratyuk IV, Samijlenko SP, Kolomiets’ IM, Hovorun DM. Prototropic molecular–zwitterionic tautomerism of xanthine and hypoxanthine. J Mol  Struct. 2000;523(1-3):109-118. CrossRef
  18. Pelmenschikov A, Hovorun DM, Shishkin OV, Leszczynski J. A density functional theory study of vibrational coupling between ribose and base rings of nucleic acids with ribosyl guanosine as a model system. J Chem Phys. 2000;113(14):5986-5990. CrossRef
  19. Shishkin OV, Pelmenschikov A, Hovorun DM, Leszczynski J. Theoretical analysis of low-lying vibrational modes of free canonical 2-deoxyribonucleosides. Chem Phys. 2000 Oct;260(3):317-325. CrossRef
  20. Samijlenko SP, Krechkivska OM, Kosach DA, Hovorun D. M. Transitions to high tautomeric states can be induced in adenine by interactions with carboxylate and sodium ions: DFT calculation data. J Mol Struct. 2004 Dec;708(1-3):97-104.  CrossRef
  21. Platonov MO, Samijlenko SP, Sudakov OO, Kondratyuk IV, Hovorun DM. To what extent can methyl derivatives be regarded as stabilized tautomers of xanthine? Spectrochim Acta A Mol Biomol Spectrosc. 2005 Nov;62(1-3):112-4. PubMed, CrossRef
  22. Danilov VI, Anisimov VM, Kurita N, Hovorun D. MP2 and DFT studies of the DNA rare base pairs: The molecular mechanism of the spontaneous substitution mutations conditioned by tautomerism of bases. Chem Phys Lett. 2005 Sep;412(4-6):285-293. CrossRef
  23.  Danilov VI, van Mourik T, Kurita N, Wakabayashi H, Tsukamoto T, Hovorun DM. On the mechanism of the mutagenic action of 5­bromouracil: a DFT study of uracil and 5­bromouracil in a water cluster. J Phys Chem A. 2009 Mar 19;113(11):2233-5. PubMed, CrossRef
  24. Yurenko YP, Zhurakivsky RO, Samijlenko SP, Hovorun DM. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis. J Biomol Struct Dyn. 2011 Aug;29(1):51-65. PubMed, CrossRef
  25.  Brovarets’ OO, Hovorun DM. How stable are the mutagenic tautomers of DNA bases? Biopolym Cell. 2010;26(1):72-76.  CrossRef
  26. Brovarets’ OO, Hovorun DM. Stability of mutagenic tautomers of uracil and its halogen derivatives: the results of quantum-mechanical investigation. Biopolym Cell. 2010;26(4):295-298.  CrossRef
  27. Brovarets’ OO, Zhurakivsky RO, Hovorun DM. Is there adequate ionization mechanism of the spontaneous transitions? Quantum-chemical investigation. Biopolym Cell. 2010;26(5):398-405. CrossRef
  28. Brovarets’ OO, Hovorun DM. Intramolecular tautomerization and the conformational variability of some classical mutagens – cytosine derivatives: quantum chemical study. Biopolym Cell. 2011;27(3):221-230. CrossRef
  29. Brovarets’ OO, Hovorun DM. IR Vibrational spectra of H-bonded complexes of adenine, 2-aminopurine and 2-aminopurine+ with cytosine and thymine: Quantum-chemical study.  Opt Spectrosc. 2011 Nov;111(5):750-757. CrossRef
  30. Brovarets’ OO, Zhurakivsky RO, Hovorun DM. The physico-chemical “anatomy” of the tautomerization through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives. J Mol Model. 2013 Oct;19(10):4119-37. PubMed, CrossRef
  31. Hovorun DM, Gorb L, Leszczynski J. From the nonplanarity of the amino group to the structural nonrigidity of the molecule: A post-Hartree-Fock ab initio study of 2-aminoimidazole.  Int J Quantum Chem. 1999;75(3):245-253. CrossRef
  32. Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors.  Mol Phys. 1970 Oct;19(4):553-566. CrossRef
  33. Frisch MJ, Trucks GW, Schlegel HB. et al. Gaussian 09 (Revision B.01). Wallingford CT: Gaussian Inc., 2010.
  34. Bader RWF. Atoms in molecules. A quantum theory. Oxford: Clarendon Press, 1990. 436p.
  35. Keith TA. AIMAll (Version 11.12.19). 2011. Retrieved from
  36. Iogansen AV. Direct proportionality of the hydrogen bonding energy and the intensification of the stretching ν(XH) vibration in infrared spectra. Spectrochim Acta Part A. 1999 Jul;55(7-8):1585-1612. CrossRef
  37. Espinosa E, Molins E, Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett. 1998 Mar;285(3-4):170-173. CrossRef
  38. Saenger W. Principles of nucleic acid structure. New York: Springer, 1984. 556p. CrossRef
  39. Bondi A. Van der Waals Volumes and Radii. J Phys Chem. 1964 Mar;68(3):441-451. CrossRef
  40. Kaplan I. Intermolecular interactions: Physical picture, computational methods and model potentials. Chichester: John Wiley & Sons Ltd., 2006. 367p. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.