Ukr.Biochem.J. 2017; Volume 89, Issue 1, Jan-Feb, pp. 76-81


Effect of preparations Methyure and Ivine on Са(2+)-ATPases activity in plasma and vacuolar membrane of corn seedling roots under salt stress conditions

M. V. Rudnytska, T. A. Palladina

Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv

Ca2+-ATPases regulate the functioning of Ca2+-dependent signaling pathway SOS which provides removal of Na+ from the cytoplasm of cells via Na+/H+-antiporters in saline conditions. The influence of synthetic preparations Methyure and Ivine on the Ca2+-ATPase activity was investigated. It was shown that exposition of corn seedlings in the presence of 0.1 M NaCl rather enhanced hydrolytic than transport activity of Ca2+-ATPases in plasma and vacuolar membrane of root cells. It was found that seed treatment with such preparations, especially Methyure, caused intensification of the both activities of Ca2+-ATPases, mainly in vacuolar membrane. The results indicate than salt protective activity of preparations, especially Methyure, is associated with increased Ca2+-ATPase activity, which regulates the functioning of Na+/H+-antiporters.

Keywords: , , , , , ,


  1. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651-81. Review. PubMed, CrossRef
  2. Hua J., Wang X., Zhai F., Yan F., Feng K. Effects of NaCl and Ca2+ on membrane potential of epidermal cells of maize roots. Agric Sci China. 2008; 7(3):291-296.  CrossRef
  3. Conde A, Chaves MM, Gerós H. Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol. 2011 Sep;52(9):1583-602. PubMed, CrossRef
  4. Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. 2014;2014:701596.  PubMed, PubMedCentral, CrossRef
  5. Yamaguchi T, Hamamoto S, Uozumi N. Sodium transport system in plant cells. Front Plant Sci. 2013 Oct 17;4:410. Review. PubMed, PubMedCentral, CrossRef
  6. Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S. Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci. 2011 Dec 2;2:85.  PubMed, PubMedCentral, CrossRef
  7. Dodd AN, Kudla J, Sanders D. The language of calcium signaling. Annu Rev Plant Biol. 2010;61:593-620. Review. PubMed, CrossRef
  8. Huda KM, Banu MS, Garg B, Tula S, Tuteja R, Tuteja N. OsACA6, a P-type IIB Ca²⁺ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes. Plant J. 2013 Dec;76(6):997-1015. PubMed, CrossRef
  9. Huda KM, Banu MS, Tuteja R, Tuteja N. Global calcium transducer P-type Ca²⁺-ATPases open new avenues for agriculture by regulating stress signalling. J Exp Bot. 2013 Aug;64(11):3099-109.  PubMed, CrossRef
  10. Schönknecht G. Calcium Signals from the Vacuole. Plants (Basel). 2013 Oct 14;2(4):589-614. Review. PubMed, PubMedCentral, CrossRef
  11. Luoni L, Bonza MC, De Michelis MI. H(+)/Ca(2+) exchange driven by the plasma membrane Ca(2+)-ATPase of Arabidopsis thaliana reconstituted in proteoliposomes after calmodulin-affinity purification. FEBS Lett. 2000 Oct 6;482(3):225-30. PubMed, CrossRef
  12. Frei dit Frey N, Mbengue M, Kwaaitaal M, Nitsch L, Altenbach D, Häweker H, Lozano-Duran R, Njo MF, Beeckman T, Huettel B, Borst JW, Panstruga R, Robatzek S. Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development. Plant Physiol. 2012 Jun;159(2):798-809. PubMed, PubMedCentral, CrossRef
  13. Pat. 26531 UA, 51 ICP (2006), A 01 C 1. 00. A method for increase salt tolerance of corn for its cultivation in saline soils. Palladina T. O., Kurylenko I. M., Chyzhikova O. A. Publ. 25.09.2007, Bul. N 15. (In Ukrainian).
  14. Larsson C., Sommarin M., Widell S. Isolation of highly purified plasma membrane and separation of inside-out and right-side-out vesicles. Meth Enzymol. 1994; 228:451-469.CrossRef
  15. Poole RJ, Briskin DP, Krátký Z, Johnstone RM. Density gradient localization of plasma membrane and tonoplast from storage tissue of growing and dormant red beet : characterization of proton-transport and ATPase in tonoplast vesicles. Plant Physiol. 1984 Mar;74(3):549-56. PubMed, PubMedCentral, CrossRef
  16. Briskin DR, Leonard RT, Hodges TK. Isolation of the plasma membrane: Membrane markers and general principles. Meth Enzymol. 1987; 148:542-558. CrossRef
  17. Freundlich A, Robards AV. Cytochemistry of differentiating plant vascular cell walls with special reference to cellulose. Cytobiologie. 1974; 8(3):355-370.
  18. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72(1-2):248-54. PubMed, CrossRef
  19. Carnelli A, De Michelis MI, Rasi-Caldogno F. Plasma Membrane Ca-ATPase of Radish Seedlings : I. Biochemical Characterization Using ITP as a Substrate. Plant Physiol. 1992 Mar;98(3):1196-201. PubMed, PubMedCentral, CrossRef
  20. Pfeiffer W, Hager A. A Ca2+-ATPase and a Mg2+/H+-antiporter are present on tonoplast membranes from roots of Zea mays L. Planta. 1993; 191(3):377-385. CrossRef
  21. Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I. Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. Cell Calcium. 2000 Feb;27(2):97-106. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.