Ukr.Biochem.J. 2017; Volume 89, Special Issue, pp. 111-122


4-Thiazolidinone-based derivatives rescue TNAα-inhibited osteoblast differentiation in mouse mesenchymal precursor cells

Kh. V. Malysheva1,2,3, N. S. Finiuk1, O. K. Pavlenko4, D. Ya. Havrylyuk5,
R. B. Lesyk5, R. S. Stoika1, O. G. Korchynskyi1,3

1Institute of Cell Biology, NAS of Ukraine, Lviv;
2Insitute of Animal Biology, NAAS of Ukraine, Lviv;
3Centre for Innovative Research in Medical and Natural Sciences,
Rzeszow University and Medical Faculty, Poland;
4Ivan Franko National University of Lviv, Ukraine;
5Danylo Halytsky Lviv National Medical University, Ukraine;

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease of yet unknown etiology. Tumor necrosis factor α (TNFα) is recognized as a regulatory substance that plays a central role in RA development and progression. On the other side, the bone morphogenetic protein (BMP) and Wnt signaling pathways are key mechanisms that induce and support cartilage and bone formation and maintenance. Previous studies showed that the pro-inflammatory cytokines TNFα and interleukin 1β (IL-1β) are central players in the inhibition of activity of skeletogenesis. The aim of this study was to evaluate the anti-inflammatory activity of novel 4-thiazolidinone-based derivatives towards TNFα–induced pro-inflammatory effects during bone formation. We performed in vitro evaluation of functional effects of 4-thiazolidinones denoted as Les-4368, Les-4370, Les-3882 and Les-3288 that were used in different doses (0.02, 0.1, 0.3 and 1.0 μM) on the TNFα-mediated inhibition of the BMP-induced osteoblast differentiation in mouse mesenchymal precursor (stem) cells of C2C12 line. Treatment of these cells with TNFα completely inhibited their myogenic differentiation, as well as strongly inhibited the BMP-induced osteogenesis. Strikingly, the treatment of C2C12 cells with Les-4368 and Les-3882 rescued the osteoblast differentiation from negative control of TNFα, and, moreover, converted this cytokine from the inhibitor of osteogenesis into its stimulator. Western-blot analysis of Inhibitory κBα (I-κBα) degradation was used to elucidate a mechanism of the anti-inflammatory effects. Les-3882 was more active, and it stimulated osteoblast differentiation at low dose (0.1 μM), presumably, via modulation of the NF-κB signaling pathway.

Keywords: , , , ,


  1. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003 May 15;423(6937):356-61. Review. PubMed, CrossRef
  2. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011 Dec 8;365(23):2205-19. Review. PubMed, CrossRef
  3. Park JY, Pillinger MH. Interleukin-6 in the pathogenesis of rheumatoid arthritis. Bull NYU Hosp Jt Dis. 2007;65 Suppl 1:S4-10. Review. PubMed
  4. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007 Jun;7(6):429-42. Review. PubMed, CrossRef
  5. Matsuno H, Yudoh K, Katayama R, Nakazawa F, Uzuki M, Sawai T, Yonezawa T, Saeki Y, Panayi GS, Pitzalis C, Kimura T. The role of TNF-alpha in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis (RA): a study using a human RA/SCID mouse chimera. Rheumatology (Oxford). 2002 Mar;41(3):329-37. PubMed, CrossRef
  6. Jang CH, Choi JH, Byun MS, Jue DM. Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxford). 2006 Jun;45(6):703-10. PubMed, CrossRef
  7. Senftleben U, Cao Y, Xiao G, Greten FR, Krähn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, Karin M. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science. 2001 Aug 24;293(5534):1495-9. PubMed, CrossRef
  8. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009 Dec;1(6):a001651. Review. PubMed, PubMedCentral, CrossRef
  9. Johnson ML, Kamel MA. The Wnt signaling pathway and bone metabolism. Curr Opin Rheumatol. 2007 Jul;19(4):376-82. Review. PubMed
  10. Issack PS, Helfet DL, Lane JM. Role of Wnt signaling in bone remodeling and repair. HSS J. 2008 Feb;4(1):66-70. PubMed, PubMedCentral, CrossRef
  11. Galli C, Piemontese M, Lumetti S, Manfredi E, Macaluso GM, Passeri G. The importance of WNT pathways for bone metabolism and their regulation by implant topography. Eur Cell Mater. 2012 Jul 12;24:46-59. Review. PubMed, CrossRef
  12. Kwan Tat S, Padrines M, Théoleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004 Feb;15(1):49-60. PubMed, CrossRef
  13. Malysheva K, de Rooij K, Lowik CW, Baeten DL, Rose-John S, Stoika R, Korchynskyi O. Interleukin 6/Wnt interactions in rheumatoid arthritis: interleukin 6 inhibits Wnt signaling in synovial fibroblasts and osteoblasts. Croat Med J. 2016 Apr 23;57(2):89-98. PubMed, PubMedCentral, CrossRef
  14. Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006 May;116(5):1202-9. Review. PubMed, PubMedCentral, CrossRef
  15. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007 Feb;13(2):156-63. PubMed, CrossRef
  16. Rawadi G, Roman-Roman S. Wnt signalling pathway: a new target for the treatment of osteoporosis. Expert Opin Ther Targets. 2005 Oct;9(5):1063-77. Review. PubMed, CrossRef
  17. Gupta A, Singh R, Sonar PK, Saraf SK. Novel 4-Thiazolidinone Derivatives as Anti-Infective Agents: Synthesis, Characterization, and Antimicrobial Evaluation. Biochem Res Int. 2016;2016:8086762. PubMed, PubMedCentral, CrossRef
  18. Tripathi AC, Gupta SJ, Fatima GN, Sonar PK, Verma A, Saraf SK. 4-Thiazolidinones: the advances continue…. Eur J Med Chem. 2014 Jan 24;72:52-77. Review. PubMed, CrossRef
  19. Havrylyuk D, Zimenkovsky B, Vasylenko O, Gzella A, Lesyk R. Synthesis of new 4-thiazolidinone-, pyrazoline-, and isatin-based conjugates with promising antitumor activity. J Med Chem. 2012 Oct 25;55(20):8630-41. PubMed, CrossRef
  20. Senkiv J, Finiuk N, Kaminskyy D, Havrylyuk D, Wojtyra M, Kril I, Gzella A, Stoika R, Lesyk R. 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells. Eur J Med Chem. 2016 Jul 19;117:33-46. PubMed, CrossRef
  21. Havrylyuk DY, Zimenkovsky BS, Lesyk RB, Roman OM. Patent ua u201114202, Nş69857. 3-{2-(5-(3,5-diaryl)-4,5-dihydropyrazol-1-yl)-4-oxo-4h-thiazol-5-iliden}-1,3-dihydroindol-2-ones, that possess anticancer activity. Publ. 10.05.2012, Bull.19.
  22. Korchynskyi O. Adenoviral vectors: convenient tools for gene delivery to primary mammalian cells. Biotechnologia Acta. 2012;5(5):16–26.
  23. van der Horst G, van Bezooijen RL, Deckers MM, Hoogendam J, Visser A, Löwik CW, Karperien M. Differentiation of murine preosteoblastic KS483 cells depends on autocrine bone morphogenetic protein signaling during all phases of osteoblast formation. Bone. 2002 Dec;31(6):661-9. PubMed, CrossRef
  24. Heffeter P, Jakupec MA, Körner W, Chiba P, Pirker C, Dornetshuber R, Elbling L, Sutterlüty H, Micksche M, Keppler BK, Berger W. Multidrug-resistant cancer cells are preferential targets of the new antineoplastic lanthanum compound KP772 (FFC24). Biochem Pharmacol. 2007 Jun 15;73(12):1873-86. PubMed, PubMedCentral, CrossRef
  25. DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer. Immunol Rev. 2012 Mar;246(1):379-400. Review. PubMed, CrossRef
  26. Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med. 2016 May;8(3):227-41. Review. PubMed, CrossRef
  27. Hoffmann A, Baltimore D. Circuitry of nuclear factor kappaB signaling. Immunol Rev. 2006 Apr;210:171-86. Review. PubMed, CrossRef
  28. Rinkenbaugh AL, Baldwin AS. The NF-κB Pathway and Cancer Stem Cells. Cells. 2016 Apr 6;5(2). pii: E16. Review. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.