Ukr.Biochem.J. 2017; Volume 89, Issue 2, Mar-Apr, pp. 70-77

doi: https://doi.org/10.15407/ubj89.02.070

Different sensitivity of Na(+),K(+)-ATPase and Mg(2+)-АТРase to ethanol and arachidonic acid in rat colon smooth muscle under pretreatment of cellular membranes with Ds-Na

A. A. Kaplia

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: kaplya@biochem.kiev.ua

The methodological procedure provides the detection of the relatively high Na+,K+-ATPase functional activity in the crude cellular membranes of rat colon smooth muscle (CSM) following standard detergent pretreatment (with Ds-Na vs digitonin). It includes the essential discrete steps: detergent membrane permeabilization under optimal detergent/protein ratio and active site protection by ATP (for Ds-Na) prior enzymatic reaction with substantial detergent dilution far below critical micelle concentration in the ATPase medium. The high level of the Na+,K+-ATPase activity, originally detected in CSM, did not differ for two detergents and was comparable with ouabain-resistant Mg2+,АТР-hydrolase activity, The features of ATPase protein-lipid complexes were evaluated by the enzyme sensitivity to the effect of ethanol and arachidonic acid with different membrane disordering effectiveness. The long-chain fatty acid is a more effective inhibitor as compared with aliphatic alcohol for both ATPases. Mg2+,АТР-hydrolase appeared to be much more resistant to inactivation than Na+,K+-ATPase. The data reflect the possible differences in lipid dependence of two enzymatic systems due to the peculiarities of the structural arrangement in membrane and importance of the hydrophobic microenvironment for mechanism of catalysis. Thus, the data represent the approach to the simple and reliable Na+,K+-АТРase activity determination in nonpurified CSM membranes, acceptable for different tissues and appropriate for quantitative comparison in pathophysiological studies and for testing the impact of diverse  effectors on Na+,K+-АТРase.

Keywords: , , , , , ,


References:

  1. Blanco G. Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin Nephrol. 2005 Sep;25(5):292-303. Review. PubMed, CrossRef
  2. Oloizia B, Paul RJ. Ca2+ clearance and contractility in vascular smooth muscle: evidence from gene-altered murine models. J Mol Cell Cardiol. 2008 Sep;45(3):347-62. Review. PubMed, PubMedCentral, CrossRef
  3. Yan Y, Shapiro JI. The physiological and clinical importance of sodium potassium ATPase in cardiovascular diseases. Curr Opin Pharmacol. 2016 Apr;27:43-9. Review. PubMed, PubMedCentral, CrossRef
  4. Sakai H, Suzuki T, Maeda M, Takahashi Y, Horikawa N, Minamimura T, Tsukada K, Takeguchi N. Up-regulation of Na(+),K(+)-ATPase alpha 3-isoform and down-regulation of the alpha1-isoform in human colorectal cancer. FEBS Lett. 2004 Apr 9;563(1-3):151-4. PubMed, CrossRef
  5. Bogdanova A, Petrushanko IY, Hernansanz-Agustín P, Martínez-Ruiz A. “Oxygen Sensing” by Na,K-ATPase: These Miraculous Thiols. Front Physiol. 2016 Aug 2;7:314. Review. PubMed, PubMedCentral, CrossRef
  6. Britton RS, Leicester KL, Bacon BR. Iron toxicity and chelation therapy. Int J Hematol. 2002 Oct;76(3):219-28. Review. PubMed, CrossRef
  7. Brissot P, Ropert M, Le Lan C, Loréal O. Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim Biophys Acta. 2012 Mar;1820(3):403-10. Review. PubMed, CrossRef
  8. Allgayer H, Kruis W, Paumgartner G, Wiebecke B, Brown L, Erdmann E. Inverse relationship between colonic (Na+ + K+)-ATPase activity and degree of mucosal inflammation in inflammatory bowel disease. Dig Dis Sci. 1988 Apr;33(4):417-22. PubMed, CrossRef
  9. Vasić V, Momić T, Petković M, Krstić D. Na⁺,K⁺-ATPase as the Target Enzyme for Organic and Inorganic Compounds. Sensors (Basel). 2008 Dec 15;8(12):8321-8360. Review. PubMed, CrossRef
  10. Petrović V, Petrović S, Joksić G, Savić J, Čolović M, Cinellu MA, Massai L, Messori L, Vasić V. Inhibition of Na(+)/K(+)-ATPase and cytotoxicity of a few selected gold(III) complexes. J Inorg Biochem. 2014 Nov;140:228-35. PubMed, CrossRef
  11. Burke EP, Sanders KM, Horowitz B. Sodium pump isozymes are differentially expressed in electrically dissimilar regions of colonic circular smooth muscle. Proc Natl Acad Sci USA. 1991 Mar 15;88(6):2370-4. PubMed, PubMedCentral
  12. Kaplia AA. The influence of heavy metal ions, spermine and sodium nitroprusside on ATP-hydrolases of cell membranes of rat colon smooth muscle. Ukr Biochem. J. 2016; 88(4): 20-28.CrossRef
  13. Vasić VM, Čolovic MB, Krstić DZ. Mechanism of Na+,K+-ATPase and Mg2+-ATPase inhibition by metal ions and complexes. Hem Ind. 2009; 63(5a): 499-509.
  14. Knowles AF, Chiang WC. Enzymatic and transcriptional regulation of human ecto-ATPase/E-NTPDase 2. Arch Biochem Biophys. 2003 Oct 15;418(2):217-27. PubMed, CrossRef
  15. Sweadner KJ. Purification from brain of an intrinsic membrane protein fraction enriched in (Na+ + K+)-ATPase. Biochim Biophys Acta. 1978 Apr 20;508(3):486-99. PubMed, CrossRef
  16. Kravtsov AV, Alekseenko IR. Surface-active compounds as instruments of biomembrane study. Kiev: Naukova Dumka,1993. 263 p.
  17. Mishchuk DO, Zimina VP, Kaplia AA. Ethanol sensitivity of rat brain cortex Na+,K+-ATPase in plasma membrane structural damage induced by sodium dodecyl sulfate. Ukr Biokhim Zhurn. 2002 Sep-Oct; 74(5): 55-61. (In Russian). PubMed
  18. Kaplia AA. The heterogeneity of the Na+, K+-ATPase ouabain sensitivity in microsomal membranes of rat colon smooth muscles. Ukr Biokhim Zhurn. 2011 Sep-Oct; 83(5): 89-93. (In Russian). PubMed
  19. Kaplia AA. The influence of iron ions on ATP-hydrolases activity of cell membranes of rat colon smooth muscle and kidney. Ukr Biochem J. 2015 Jan-Feb;87(1):83-90. (In Russian). PubMed, CrossRef
  20. Lin SH, Guidotti G. Purification of membrane proteins. Methods Enzymol. 2009;463:619-29. Review. PubMed, CrossRef
  21. Orwick-Rydmark M, Arnold T, Linke D. The Use of Detergents to Purify Membrane Proteins. Curr Protoc Protein Sci. 2016 Apr 1;84:4.8.1-4.8.35. PubMed, CrossRef
  22. Turi A, Somogyi J. Possible regulation of the myometrial Na+/K+-ATPase activity by Ca2+ and cAMP-dependent protein kinase. Biochim Biophys Acta. 1988 May 9;940(1):77-84. PubMed, CrossRef
  23. Mishchuk DO, Kaplia AA. Effect of ethanol on structural and functional characteristics of rat brain cortical membranes in vitro. Ukr Biokhim Zhurn. 2003 Mar-Apr;75(2):55-61. (In Russian). PubMed
  24. Allgayer H, Brown L, Kruis W, Erdmann E, Paumgartner G. Inhibition of human colonic (Na+ + K+)-ATPase by arachidonic and linoleic acid. Naunyn Schmiedebergs Arch Pharmacol. 1986 Apr;332(4):398-402. PubMed, CrossRef
  25. Ali I, Campbell WB, Sarna SK. Impaired activation of cytosolic phospolipase A(2) in inflamed canine colonic circular muscle. Gastroenterology. 2000 Jul;119(1):62-70.
    PubMed, CrossRef
  26. Sarkis A, Roman RJ. Role of cytochrome P450 metabolites of arachidonic acid in hypertension. Curr Drug Metab. 2004 Jun;5(3):245-56. Review. PubMed, CrossRef
  27. Singh TU, Choudhury S, Parida S, Maruti BS, Mishra SK. Arachidonic acid inhibits Na⁺-K⁺-ATPase via cytochrome P-450, lipoxygenase and protein kinase C-dependent pathways in sheep pulmonary artery. Vascul Pharmacol. 2012 Jan-Feb;56(1-2):84-90. PubMed, CrossRef
  28. Kravtsov AV, Alekseenko IR. The mechanisms of the regulation of the vector enzymes in biomembranes. Kiev: Naukova Dumka, 1990. 176 p.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.