Ukr.Biochem.J. 2019; Volume 91, Issue 1, Jan-Feb, pp. 5-20


Рantoea agglomerans lipopolysaccharides: structure, functional and biological activity

L. D. Varbanets, Т. V. Bulyhina, L. А. Pasichnyk, N. V. Zhytkevich

Zabolotny Institute of Microbiology and Virology,
National Academy of Sciences of Ukraine, Kyiv;

Received: 02 September 2018; Accepted: 13 December 2018

This review analyzed literature data, as well as our own research on lipopolysaccharides (LPS) of gram-negative bacteria, focusing mainly on Pantoea agglomerans, a member of the Enterobacteriaceae fami­ly. The unique structures of O-specific polysaccharide chains of LPS from Pantoea agglomerans represented by both linear and branched tetra- and pentasaccharide repeating units were described for the first time. The heterogeneity of the LPS molecule itself and the presence of several LPS in the bacterial cell, which differ in the structure of lipids A, O-specific polysaccharide chains, serological activity, as well as endotoxic properties, such as toxicity and pyrogenicity, were shown. Such heterogeneity represents one of the mechanisms of LPS multifunctionality. Based on the antigenicity of LPS, serotyping of P. agglomerans strains and their assignment to 10 serogroups were carried out for the first time. The high immunomodulatory activity of P. agglomerans LPS suggests the possibility to use their oligosaccharide fragments in the development of conjugated vaccines against diseases caused by gram-negative bacteria.

Keywords: , , , , ,


  1.  Walterson AM, Stavrinides J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev. 2015;39(6):968-84. PubMed, CrossRef
  2. Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kersters K, De Ley J. Transfer of Enterobacter agglomerans (Beijerinck 1988) Ewing and File 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and deccription of Pantoea dispersa sp. nov. Int J Syst  Bacteriol. 1989;39(3):337-345.  CrossRef
  3.  Quecine MC, Araújo WL, Rossetto PB, Ferreira A, Tsui S, Lacava PT, Mondin M, Azevedo JL, Pizzirani-Kleiner AA. Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Appl Environ Microbiol. 2012 Nov;78(21):7511-8.  PubMed, PubMedCentral, CrossRef
  4. Völksch B, Thon S, Jacobsen ID, Gube M. Polyphasic study of plant- and clinic-associated Pantoea agglomerans strains reveals indistinguishable virulence potential. Infect Genet Evol. 2009 Dec;9(6):1381-91. PubMed, CrossRef
  5. Loncaric I, Heigl H, Licek E, Moosbeckhofer R, Busse H-J., Rosengarten R. Typing of Pantoea agglomerans isolated from colonies of honey bees (Apis mellifera) and culturability of selected strains from honey. Apidologie. 2009;40(1):40–54. CrossRef
  6. Rylander R, Burrell R. Endotoxins in inhalation research. Summary of conclusions of a workshop held at Clearwater, Florida, U.S.A., 28-30 September 1987. Ann Occup Hyg. 1988;32(4):553-6. PubMed, CrossRef
  7. Kohchi C, Inagawa H, Nishizawa T, Yamaguchi T, Nagai S, Soma G. Applications of lipopolysaccharide derived from Pantoea agglomerans (IP-PA1) for health care based on macrophage network theory. J Biosci Bioeng. 2006 Dec;102(6):485-96. PubMed, CrossRef
  8. Nicoletti G, Corbella M, Jaber O, Marone P, Scevola D, Faga A. Non-pathogenic microflora of a spring water with regenerative properties. Biomed Rep. 2015 Nov;3(6):758-762. PubMed, PubMedCentral, CrossRef
  9. Valiente Moro C, Tran FH, Raharimalala FN, Ravelonandro P, Mavingui P. Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiol. 2013 Mar 27;13:70. PubMed, PubMedCentral, CrossRef
  10. Bisi DC, Lampe DJ. Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals. Appl Environ Microbiol. 2011 Jul;77(13):4669-75. PubMed, PubMedCentral, CrossRef
  11. Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci USA. 2012 Jul 31;109(31):12734-9. PubMed, PubMedCentral, CrossRef
  12. Dow M, Newman MA, von Roepenack E. The Induction and Modulation of Plant Defense Responses by Bacterial Lipopolysaccharides. Annu Rev Phytopathol. 2000 Sep;38:241-261. PubMed, CrossRef
  13. Nadarasah G, Stavrinides J. Quantitative evaluation of the host-colonizing capabilities of the enteric bacterium Pantoea using plant and insect hosts. Microbiology. 2014 Mar;160(Pt 3):602-15. PubMed, CrossRef
  14. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010 Mar 19;140(6):805-20. PubMed, CrossRef
  15. Kim S, Patel DS, Park S, Slusky J, Klauda JB, Widmalm G, Im W. Bilayer properties of lipid A from various gram-negative bacteria. Biophys J. 2016 Oct 18;111(8):1750-1760. PubMed, PubMedCentral, CrossRef
  16. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635-700. PubMed, PubMedCentral
  17. Holst O, Molinaro A. Core oligosaccharide and lipid A components of lipopolysaccharides. In: Moran A, Brennan P, Holst O, von Itszstein M (eds) Microbial glycobiology: structures relevance and applications. San Diego: Elsevier. 2009. P. 29–56. CrossRef
  18. Galanos C, Freudenberg MA. Bacterial endotoxins: biological properties and mechanisms of action. Mediators Inflamm. 1993;2(7):S11-6. PubMed, PubMedCentral, CrossRef
  19. Homma JY, Matsuura M, Kanegasaki S, Kawakubo Y, Kojima Y, Shibukawa N, Kumazawa Y, Yamamoto A, Tanamoto K, Yasuda T, Imoto M, Yoshimura H, Kusumoto S, Shiba T. Structural requirements of lipid A responsible for the functions: a study with chemically synthesized lipid A and its analogues. J Biochem. 1985 Aug;98(2):395-406. PubMed, CrossRef
  20. Kotani S, Takada H, Tsujimoto M, Ogawa T, Takahashi I, Ikeda T, Otsuka K, Shimauchi H, Kasai N, Mashimo J, et al. Synthetic lipid A with endotoxic and related biological activities comparable to those of a natural lipid A from an Escherichia coli re-mutant. Infect Immun. 1985 Jul;49(1):225-37. PubMed, PubMedCentral
  21. Varbanets LD, Brovarskaya OS, Bulygina TV, Garkavaya EG, Zhitkevich NV. Characterization of Pantoea agglomerans lipopolysaccharides. Microbiology. 2014;83(6):754–763. PubMed
  22. Tsukioka D, Nishizawa T, Miyase T, Achiwa K, Suda T, Soma G, Mizuno D. Structural characterization of lipid A obtained from Pantoea agglomerans lipopolysaccharide. FEMS Microbiol Lett. 1997 Apr 15;149(2):239-44. PubMed, CrossRef
  23. Mayer H, Krauss JH, Yokota A, Weckesser J. Natural variants of lipid A. Adv Exp Med Biol. 1990;256:45-70. PubMed, CrossRef
  24. Moran AP, Lindner B, Walsh EJ. Structural characterization of the lipid A component of Helicobacter pylori rough- and smooth-form lipopolysaccharides. J Bacteriol. 1997 Oct;179(20):6453-63. PubMed, PubMedCentral, CrossRef
  25. Gitaitis RD, Gay JD. First report of a leaf blight, seed stalk rot, and bulb decay of onion by Pantoea ananas in Georgia. Plant Dis. 1997;81(9):1096.  CrossRef
  26. Knirel YA, Valvano MA. Structure, chemical synthesis, biogenesis and interactions with host cells. Wien-N.Y.: Springer-Verlag. 2011. 433 p.
  27. Trent MS, Ribeiro AA, Lin S, Cotter RJ, Raetz CR. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J Biol Chem. 2001 Nov 16;276(46):43122-31. PubMed, CrossRef
  28. Zdorovenko EL, Kadykova AA, Shashkov AS, Varbanets LD, Bulyhina TV, Knirel YA. Lipopolysaccharide of Pantoea agglomerans 7969: Chemical identification, function and biological activity. Carbohydr Polym. 2017 Jun 1;165:351-358. PubMed, CrossRef
  29. Zdorovenko EL, Kadykova AA, Shashkov AS, Varbanets LD, Bulyhina TV, Knirel YA. Lipopolysaccharides of Pantoea agglomerans 7604 and 8674 with structurally related O-polysaccharide chains: Chemical identification and biological properties. Carbohydr Polym. 2018 Feb 1;181:386-393. PubMed, CrossRef
  30. Mattsby-Baltzer I, Mielniczuk Z, Larsson L, Lindgren K, Goodwin S. Lipid A in Helicobacter pylori. Infect Immun. 1992 Oct;60(10):4383-7. PubMed, PubMedCentral
  31. Leone S, Molinaro A, Pessione E, Mazzoli R, Giunta C, Sturiale L, Garozzo D, Lanzetta R, Parrilli M. Structural elucidation of the core-lipid A backbone from the lipopolysaccharide of Acinetobacter radioresistens S13, anorganic solvent tolerant Gram-negative bacterium. Carbohydr Res. 2006;341(5):582-590.  CrossRef
  32. Raetz CR, Reynolds CM, Trent MS, Bishop RE. Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem. 2007;76(1):295-329. PubMed, PubMedCentral, CrossRef
  33. Cole RB, Domelsmith LN, David CM, Laine RA, DeLucca AJ. 252Cf plasma-desorption mass spectrometry of lipid A from Enterobacter agglomerans. Rapid Commun Mass Spectrom. 1992 Oct;6(10):616-22. PubMed, CrossRef
  34. Karamanos Y, Kol O, Wieruszeski JM, Strecker G, Fournet B, Zalisz R. Structure of the O-specific polysaccharide chain of the lipopolysaccharide of Enterobacter agglomerans. Carbohydr Res. 1992 Jul 2;231:197-204. PubMed, CrossRef
  35. Bulyhina TV, Varbanets LD, Pasichnyk L A, Zhitkevych NV. Antibiotic resistance of Pantoea agglomerans. Microbiol Biotechnol. 2016; 1(33): 68-75. (In Ukrainian).
  36. Varbanets LD, Zdorovenko GM, Knirel YuA. Methods of endotoxin investigations. K.: Naukova dumka, 2006. 238 p. (In Ukrainian).
  37. Kabanov DS, Prokhorenko IR. Structural analysis of lipopolysaccharides from Gram-negative bacteria. Biochemistry (Mosc). 2010 Apr;75(4):383-404. PubMed, CrossRef
  38. Cimmino A, Marchi G, Surico G, Hanuszkiewicz A, Evidente A, Holst O. The structure of the O-specific polysaccharide of the lipopolysaccharide from Pantoea agglomerans strain FL1. Carbohydr Res. 2008 Feb 4;343(2):392-6.  PubMed
  39. Hashimoto M, Satou R, Ozono M, Inagawa H, Soma GI. Characterization of the O-antigen polysaccharide derived from Pantoea agglomerans IG1 lipopolysaccharide. Carbohydr Res. 2017 Sep 8;449:32-36. PubMed, CrossRef
  40. Jansson PE, Kenne L, Wehler T. A 2D-1H-n.m.r. study of some Shigella flexneri O-polysaccharides. Carbohydr Res. 1987 Sep 1;166(2):271-82. PubMed
  41. Holst O, Aucken HM, Seltmann G. Structural and serological characterization of the O-specific polysaccharide of the lipopolysaccharide from proposed new serotype O29 of Serratia marcescens. J Endotoxin Res. 1997;4(3):215–220. CrossRef
  42. Kołodziejska K, Perepelov AV, Zabłotni A, Drzewiecka D, Senchenkova SN, Zych K, Shashkov AS, Knirel YA, Sidorczyk Z. Structure of the glycerol phosphate-containing O-polysaccharides and serological studies of the lipopolysaccharides of Proteus mirabilis CCUG 10704 (OE) and Proteus vulgaris TG 103 classified into a new Proteus serogroup, O54. FEMS Immunol Med Microbiol. 2006 Jul;47(2):267-74. PubMed, CrossRef
  43. Winn AM, Wilkinson SG. Structure of the O6 antigen of Stenotrophomonas (Xanthomonas or Pseudomonas) maltophilia. Carbohydr Res. 1995 Aug 11;272(2):225-30. PubMed, CrossRef
  44. Westphal O. Bacterial Endotoxins. Molecular and cellular aspects of allergy. Trans College Intern Allergol. 1975;49:1-43.
  45. Zdorovenko EL, Varbanets LD, Liu B, Valueva OA, Wang Q, Shashkov AS, Garkavaya EG, Brovarskaya OS, Wang L, Knirel YA. Structure and gene cluster of the O antigen of Escherichia coli L-19, a candidate for a new O-serogroup. Microbiology. 2014 Sep;160(Pt 9):2102-7.  PubMed, CrossRef
  46. Culbertson RJr, Osburn BI. The biologic effects of bacterial endotoxin: a short review. Vet Sci Commun. 1980;4(1):3–14.  CrossRef
  47. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998 Dec 11;282(5396):2085-8. PubMed, CrossRef
  48. Volchenkov R, Sprater F, Vogelsang P, Appel S. The 2011 Nobel Prize in physiology or medicine. Scand J Immunol. 2012;75(1):2033–2040.  CrossRef
  49. Piazza M, Yu L, Teghanemt A, Gioannini T, Weiss J, Peri F. Evidence of a specific interaction between new synthetic antisepsis agents and CD14. Biochemistry. 2009 Dec 29;48(51):12337-44. PubMed, PubMedCentral, CrossRef
  50. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M.MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med. 1999 Jun 7;189(11):1777-82. PubMed, PubMedCentral, CrossRef
  51. Inohara N, Nuñez G. ML – a conserved domain involved in innate immunity and lipid metabolism. Trends Biochem Sci. 2002 May;27(5):219-21. PubMed, CrossRef
  52. Resman N, Vasl J, Oblak A, Pristovsek P, Gioannini TL, Weiss JP, Jerala R. Essential roles of hydrophobic residues in both MD-2 and toll-like receptor 4 in activation by endotoxin. J Biol Chem. 2009 May 29;284(22):15052-60. PubMed, PubMedCentral, CrossRef
  53. Gangloff M, Gay NJ. MD-2: the Toll ‘gatekeeper’ in endotoxin signalling. Trends Biochem Sci. 2004 Jun;29(6):294-300. PubMed, CrossRef
  54. Gruber A, Mancek M, Wagner H, Kirschning CJ, Jerala R. Structural model of MD-2 and functional role of its basic amino acid clusters involved in cellular lipopolysaccharide recognition. J Biol Chem. 2004 Jul 2;279(27):28475-82.  PubMed, CrossRef
  55. Ohto U, Fukase K, Miyake K, Satow Y. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science. 2007 Jun 15;316(5831):1632-4. PubMed, CrossRef
  56. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, Lee JO. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell. 2007 Sep 7;130(5):906-17. PubMed, CrossRef
  57. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood. 1991 Apr 15;77(8):1627-52.  PubMed
  58. Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med. 2000 Aug 3;343(5):338-44. PubMed
  59. Dutkiewicz J. Studies on endotoxin of Erwinia herbicola and their biological activity. Zentralbl Bakteriol Orig A. 1976 Dec;236(4):487-508. PubMed
  60. Thomas L. The role of epinephrine in the reactions produced by the endotoxins of gram-negative bacteria. I. Hemorrhagic necrosis produced by epinephrine in the skin of endotoxin-treated rabbits. J Exp Med. 1956 Dec 1;104(6):865-80. PubMed, PubMedCentral, CrossRef
  61. Rylander R, Lundholm M. Bacterial contamination of cotton and cotton dust and effects on the lung. Br J Ind Med. 1978 Aug;35(3):204-7. PubMed, PubMedCentral, CrossRef
  62. Helander I, Salkinoja-Salonen M, Rylander R. Chemical structure and inhalation toxicity of lipopolysaccharides from bacteria on cotton. Infect Immun. 1980 Sep;29(3):859-62. PubMed, PubMedCentral
  63. Helander I, Saxén H, Salkinoja-Salonen M, Rylander R. Pulmonary toxicity of endotoxins: comparison of lipopolysaccharides from various bacterial species. Infect Immun. 1982 Feb;35(2):528-32. PubMed, PubMedCentral
  64. Inagawa H, Nishizawa T, Takagi K, Goto S, Soma G, Mizuno D. Antitumor mechanism of intradermal administration of lipopolysaccharide. Anticancer Res. 1997 May-Jun;17(3C):1961-4. PubMed
  65. Iwamoto I, Goto S, Kera J, Soma G, Takeuchi S, Nagata Y. Mechanistic analysis of high antitumor effect of intradermal administration of lipopolysaccharide from Pantoea Agglomerans. Med Oncol. 1996 Jun;13(2):103-9. PubMed, CrossRef
  66. Inagawa H, Nishizawa T, Noguchi K, Minamimura M, Takagi K, Goto S, Soma G, Mizuno D. Anti-tumor effect of lipopolysaccharide by intradermal administration as a novel drug delivery system. Anticancer Res. 1997 May-Jun;17(3C):2153-8. PubMed
  67. Dutkiewicz J, Mackiewicz B, Lemieszek MK, Golec M, Skórska C, Góra-Florek A, Milanowski J. Pantoea agglomerans: a mysterious bacterium of evil and good. Part II – Deleterious effects: Dust-borne endotoxins and allergens – focus on grain dust, other agricultural dusts and wood dust. Ann Agric Environ Med. 2016;23(1):6-29. PubMed, CrossRef
  68. Kobayashi Y, Inagawa H, Kohchi C, Okazaki K, Zhang R, Soma G. Effect of Lipopolysaccharide Derived from Pantoea agglomerans on the Phagocytic Activity of Amyloid β by Primary Murine Microglial Cells. Anticancer Res. 2016 Jul;36(7):3693-8. PubMed
  69. Brady CL, Venter SN, Cleenwerck I, Engelbeen K, de Vos P, Wingfield MJ, Telechea N, Coutinho TA. Isolation of Enterobacter cowanii from Eucalyptus showing symptoms of bacterial blight and dieback in Uruguay. Lett Appl Microbiol. 2009 Oct;49(4):461-5. PubMed, CrossRef
  70. Shubshinskyi VV, Varbanets LD, Brovarskaya OS. Endotoxic activity of Pragia fontium lipopolysaccharides. Modern Toxicol Probl. 2007; 4: 35-38. (In Ukrainian).
  71. Silipo A, De Castro C, Lanzetta R, Parrilli M, Molinaro A. Lipopolysaccharides. In: Konig H, Claus H, Varma A (eds) Prokaryotic cell wall compounds – structure and biochemistry. Heidelberg: Springer. 2010. p. 133–154. CrossRef
  72. Holst O., Molinaro A. Microbial glycobiology: structures relevance and applications. San Diego: Elsevier. 2009. 1020 p.
  73. Seydel U, Oikawa M, Fukase K, Kusumoto S, Brandenburg K. Intrinsic conformation of lipid A is responsible for agonistic and antagonistic activity. Eur J Biochem. 2000 May;267(10):3032-9. PubMed, CrossRef
  74. Kadowaki T, Inagawa H, Kohchi C, Hirashima M, Soma G. Functional characterization of lipopolysaccharide derived from symbiotic bacteria in rice as a macrophage-activating substance. Anticancer Res. 2011 Jul;31(7):2467-76. PubMed
  75. Shimada M, Kadowaki T, Taniguchi Y, Inagawa H, Okazaki K, Soma G. The involvement of O-antigen polysaccharide in lipopolysaccharide in macrophage activation. Anticancer Res. 2012 Jun;32(6):2337-41. PubMed
  76. Kadowaki T, Ohno S, Taniguchi Y, Inagawa H, Kohchi C, Soma G. Induction of nitric oxide production in RAW264.7 cells under serum-free conditions by O-antigen polysaccharide of lipopolysaccharide. Anticancer Res. 2013 Jul;33(7):2875-9. PubMed
  77. Pupo E, Lindner B, Brade H, Schromm AB. Intact rough- and smooth-form lipopolysaccharides from Escherichia coli separated by preparative gel electrophoresis exhibit differential biologic activity in human macrophages. FEBS J. 2013 Feb;280(4):1095-111. PubMed, CrossRef
  78. Salkinoja-Salonen M., Helander I., Rylander R. Toxic bacterial dusts associated with plants. In: Rhodes-Roberts M, Skinner FA (eds.). Bacteria and Plants. Soc Appl Bact Symp Ser. No. 10. London: Academic Press; 1982. p. 219–233.
  79. Dutkiewicz J., Skórska C., Sitkowska J., Ochalska B., Kaczmarski F. Properties of the endotoxins produced by various gram-negative bacteria present in occupational environments. In: Jacobs RR, Wakelyn PJ, Rylander R, Burrell R. (eds.). Cotton Dust. Proceedings of the 12th Cotton Dust Research Conference and of the Endotoxin Inhalation Workshop, 28–30 September 1987, Clearwater: FL; 1988. p. 187–189.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.