Ukr.Biochem.J. 2019; Volume 91, Issue 3, May-Jun, pp. 46-55


Сalix[4]arene chalcone amides effects on myometrium mitochondria

S. G. Shlykov1, A. M. Kushnarova-Vakal1, A. V. Sylenko1,
L. G. Babich1, О. Yu. Chunikhin1, O. A. Yesypenko2,
V. I. Kalchenko2, S. O. Kosterin1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv

Received: 19 November 2018; Accepted: 14 March 2019

Mitochondria are a key player in a wide range of the most important functions of the cell. Calixarenes are supramolecular compounds that have been widely used in bioorganic chemistry and biochemistry. The aim of this work was to study the effects of calix[4]arenes with two (С-1012, С-1021), three (С-1023, С-1024) and four (С-1011) chalcone amide groups on the myometrial mitochondria membranes polarization, Ca2+ concentration in the matrix of these organelles ([Ca2+]m ) and on the average hydrodynamic diameter of mitochondria. It was shown that permeabilized myometrium cells incubation with calix[4]arenes containing two or more chalcone amide groups, was accompanied by an increased level of myometrial mitochondria membranes polarization. All studied calix[4]arenes increased [Ca2+]m values in the absence and in the presence of exogenous Ca2+. The values of [Ca2+]m in the absence of exogenous Ca2+ were higher at mitochondria incubation in Mg2+-containing, than in Mg2+,ATP-containing medium. Incubation of isolated mitochondria with the studied calix[4]arenes resulted in changes of mitochondria volume: at incubation with С-1012, С-1021, C-1023 the average hydrodynamic diameter was decreased, while with С-1011 it was increased. Thus, we have shown that a short-term (5 min) incubation of mitochondria in the presence of 10 µM calix[4]arenes, which contain from two to four chalcone amide groups, increased the level of mitochondria membranes polarization, ionized Ca concentration in the matrix and had different effects on the mitochondrial volume.

Keywords: , , , , ,


  1. Babich LG, Shlykov SG, Boyko VI, Kliachina MA, Kosterin SA. Calix[4]arenes C-136 and C-137 hyperpolarize myometrium mitochondria membranes. Bioorg Khim. 2013 Nov-Dec;39(6):728-35. (In Russian). PubMed, CrossRef
  2. Molecular Basis for Mitochondrial Signaling.– Cham: “Springer International Publishing,” 2017.
  3. DeLuca HF, Engstrom GW. Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci USA. 1961 Nov 15;47:1744-50. PubMed, PubMedCentral, CrossRef
  4. Filadi R, Theurey P, Rossi A, Fedeli C, Pizzo P. Mitochondrial Ca2+ Handling and Behind: The Importance of Being in Contact with Other Organelles. In: Biological and Medical Physics, Biomedical Engineering. 2017: 3-39. CrossRef
  5. Babich LH, Shlykov SH, Kosterin SO. Ca ion transport in smooth muscle mitochondria. Ukr Biochem J. 2014 Nov-Dec;86(6):18-30. (In Ukrainian). PubMed, CrossRef
  6. Dedkova EN, Blatter LA. Calcium signaling in cardiac mitochondria. J Mol Cell Cardiol. 2013 May;58:125-33. PubMed, PubMedCentral, CrossRef
  7. Williams GS, Boyman L, Chikando AC, Khairallah RJ, Lederer WJ. Mitochondrial calcium uptake. Proc Natl Acad Sci USA. 2013 Jun 25;110(26):10479-86. PubMed, PubMedCentral, CrossRef
  8. Rodik R, Boiko V, Danylyuk O, Suwinska K, Tsymbal I, Slinchenko N, Babich L, Shlykov S, Kosterin S, Lipkowski J, Kalchenko V. Calix[4]arenesulfonylamidines. Synthesis, structure and influence on Mg2+, ATP-dependent calcium pumps. Tetrahedron Lett. 2005;46(43):7459-7462.  CrossRef
  9. Shlykov SH, Babich LH, Slichenko NM, Rodik R V, Boyko VI, Kal’chenko VI, Kosterin SO. Calixarene C-91 stimulates Ca2+ accumulation in the myometrium mitochondria. Ukr Biokhim Zhurn. 2007 Jul-Aug;79(4):28-33. (In Ukrainian). PubMed
  10. Babich LG, Shlykov SG, Kushnarova AM, Esypenko OA, Kosterin SO. Calix[4]arene chalcone amides — The nanosize modulators of polarization of mitochondrial membranes and content of the ionized Ca in them. Nanosistemi, Nanomater Nanotehnologii. 2017; 15(1):193–202.
  11. Shetty D, Jahovic I, Raya J, Asfari Z, Olsen JC, Trabolsi A. Porous Polycalix[4]arenes for Fast and Efficient Removal of Organic Micropollutants from Water. ACS Appl Mater Interfaces. 2018 Jan 24;10(3):2976-2981. PubMed, CrossRef
  12. Orlikova B, Tasdemir D, Golais F, Dicato M, Diederich M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr. 2011 May;6(2):125-47. PubMed, PubMedCentral, CrossRef
  13. León-González AJ, Acero N, Muñoz-Mingarro D, Navarro I, Martín-Cordero C. Chalcones as Promising Lead Compounds on Cancer Therapy. Curr Med Chem. 2015;22(30):3407-25. PubMed, CrossRef
  14. Mahapatra DK, Bharti SK. Therapeutic potential of chalcones as cardiovascular agents. Life Sci. 2016 Mar 1;148:154-72. PubMed, CrossRef
  15. Zhang S, Li T, Zhang Y, Xu H, Li Y, Zi X, Yu H, Li J, Jin CY, Liu HM. A new brominated chalcone derivative suppresses the growth of gastric cancer cells in vitro and in vivo involving ROS mediated up-regulation of DR5 and 4 expression and apoptosis. Toxicol Appl Pharmacol. 2016 Oct 15;309:77-86. PubMed, PubMedCentral, CrossRef
  16. Zhou B, Xing C. Diverse Molecular Targets for Chalcones with Varied Bioactivities. Med Chem (Los Angeles). 2015 Aug;5(8):388-404.  PubMed, PubMedCentral, CrossRef
  17. Nimse SB, Kim T. Biological applications of functionalized calixarenes. Chem Soc Rev. 2013 Jan 7;42(1):366-86.  PubMed, CrossRef
  18. Iwamoto K, Shinkai S. Synthesis and ion selectivity of all conformational isomers of tetrakis[(ethoxycarbonyl)methoxy]calix[4]arene. J Org Chem. 1992; 57(26): 7066–73. CrossRef
  19. Klyachina MA, Boyko VI, Yakovenko AV, Babich LG, Shlykov SG, Kosterin SO, Khilya VP, Kalchenko VI. Calix[4]arene N-chalconeamides: synthesis and influence on Mg2+,ATP-dependent Ca2+ accumulation in the smooth muscle subcellular structures. J Incl Phenom Macrocycl Chem. 2008; 60(1-2):131-7. CrossRef
  20. Kosterin SA, Bratkova NF, Kurskiy MD. The role of sarcolemma and mitochondria in calcium-dependent control of myometrium relaxation. Biokhimiia (Mosc). 1985 Aug;50(8):1350-61. (In Russian). PubMed
  21. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. PubMed, CrossRef
  22. Mollard P, Mironneau J, Amedee T, Mironneau C. Electrophysiological characterization of single pregnant rat myometrial cells in short-term primary culture. Am J Physiol. 1986 Jan;250(1 Pt 1):C47-54. PubMed, CrossRef
  23. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440-50. PubMed
  24. Antonenko YN, Avetisyan AV, Cherepanov DA, Knorre DA, Korshunova GA, Markova OV, Ojovan SM, Perevoshchikova IV, Pustovidko AV, Rokitskaya TI, Severina II, Simonyan RA, Smirnova EA, Sobko AA, Sumbatyan NV, Severin FF, Skulachev VP. Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers. J Biol Chem. 2011 May 20;286(20):17831-40.  PubMed, PubMedCentral, CrossRef
  25.  Divakaruni AS, Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda). 2011 Jun;26(3):192-205. PubMed, CrossRef
  26. McCarron JG, Olson ML, Wilson C, Sandison ME, Chalmers S. Examining the role of mitochondria in Ca²⁺ signaling in native vascular smooth muscle. Microcirculation. 2013 May;20(4):317-29. PubMed, PubMedCentral, CrossRef
  27. Babich LG, Shlykov SG, Borisova LA, Kosterin SA. Energy-dependent Ca2+-transport in intracellular smooth muscle structures. Biokhimiia (Mosc). 1994 Aug;59(8):1218-29. (In Russian). PubMed
  28. Babich LG, Shlykov SG, Kushnarova AM, Kosterin SO. Ca(2+)-dependent regulation of the Ca(2+) concentration in the myometrium mitochondria. I. Trifluoperazine effects on mitochondria membranes polarization and [Ca(2+)](m). Ukr Biochem J. 2016 Jul-Aug;88(4):5-11. PubMed, CrossRef
  29. Kaim G, Dimroth P. ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage. EMBO J. 1999 Aug 2;18(15):4118-27. PubMed, PubMedCentral, CrossRef
  30. Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 2013 Feb;47(1):9-23. PubMed, PubMedCentral, CrossRef
  31. Starkov AA, Fiskum G. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem. 2003 Sep;86(5):1101-7. PubMed, CrossRef
  32. Liu SS. Mitochondrial Q cycle-derived superoxide and chemiosmotic bioenergetics. Ann N Y Acad Sci. 2010 Jul;1201(1):84-95. PubMed, CrossRef
  33. Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR. Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol. 2012;810:183-205. PubMed, CrossRef
  34. Hockenbery DM. Targeting mitochondria for cancer therapy. Environ Mol Mutagen. 2010 Jun;51(5):476-89. PubMedCrossRef
  35. Gutierrez RMP, Muniz-Ramirez A, Sauceda JV. Review: The potential of chalcones as a source of drugs. African J Pharm Pharmacol. 2015;9(8):237-57. CrossRef
  36. Sabzevari O, Galati G, Moridani MY, Siraki A, O’Brien PJ. Molecular cytotoxic mechanisms of anticancer hydroxychalcones. Chem Biol Interact. 2004 Jun 30;148(1-2):57-67. PubMed, CrossRef
  37. Cheng ZP, Tao X, Gong J, Dai H, Hu LP, Yang WH. Early-stage morphological observations of myoma and myometrium after laparoscopic uterine artery occlusion treatment. Eur J Obstet Gynecol Reprod Biol. 2009 Jul;145(1):113-6. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.