Ukr.Biochem.J. 2020; Volume 92, Issue 3, May-Jun, pp. 46-57


Identification of the binding site for plasminogen kringle 5 in the α-chain of fibrin(ogen) D-fragment

L. G. Kapustianenko*, T. V. Grinenko, A. V. Rebriev,
O. I. Yusova, A. A. Tykhomyrov

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;

Received: 17 May 2020; Accepted: 30 June 2020

The interaction of the fifth kringle of Glu-plasminogen with fibrin triggers activation and initiation of fibrinolysis, yet the site on fibrin that binds kringle 5 remains unknown.  The aim of our work was to determine an amino acid sequence in the D-fragment of fibrin(ogen) molecule, which is complementary to the lysine-binding site (LBS) in kringle 5. We studied the interaction between kringle 5 of plasminogen with polypeptide chains of the D-fragments of fibrin and cyanogen bromide fragments FCB-2 and t-NDSK and showed that kringle 5 bound specifically to α- and γ-chains of the D-fragment and the α-chain of FCB-2. Tryptic peptides of D-fragment α-chain were obtained, separated by their ability to bind with the immobilized kringle 5, and then all studied peptides were characterized by MALDI-TOF analysis. The critical amino acid residues of the α-chain of D-fragment, which provide its interaction with kringle 5, turned out to be α171Arg and/or α176Lys. The binding site of Glu-plasminogen complementary to the LBS of kringle 5 is located within Аα168Ala−183Lys, a sequence in a weakly structured loop between two supercoils in the α-chain of the D-fragment of the fibrin(ogen) molecule.

Keywords: , , , , ,


  1. Lijnen HR. Elements of the fibrinolytic system. Ann N Y Acad Sci. 2001;936(1):226-236. PubMed, CrossRef
  2. Doolittle RF. Searching for differences between fibrinogen and fibrin that affect the initiation of fibrinolysis. Cardiovasc Hematol Agents Med Chem. 2008;6(3):181-189. PubMed, CrossRef
  3. Ponting CP, Marshall JM, Cederholm-Williams SA. Plasminogen: a structural review. Blood Coagul Fibrinolysis. 1992;3(5):605-614. PubMed, CrossRef
  4. Aisina RB, Mukhametova LI. Structure and functions of plasminogen/plasmin system. Bioorg Khim. 2014;40(6):642-657. (In Russian). PubMed, CrossRef
  5. Miles LA, Parmer RJ. Plasminogen receptors: the first quarter century. Semin Thromb Hemost. 2013;39(4):329-337.  PubMed, PubMedCentral, CrossRef
  6. Tykhomyrov AA, Shram SI, Grinenko TV. The role of angiostatins in diabetic complications. Biochemistry (Moscow) Suppl. Series B Biomed. Chem. 2014; 8(2): 94–107.
  7. Cockell CS, Marshall JM, Dawson KM, Cederholm-Williams SA, Ponting CP. Evidence that the conformation of unliganded human plasminogen is maintained via an intramolecular interaction between the lysine-binding site of kringle 5 and the N-terminal peptide. Biochem J. 1998;333(Pt 1):99-105. PubMed, PubMedCentral, CrossRef
  8. Marshall JM, Brown AJ, Ponting CP. Conformational studies of human plasminogen and plasminogen fragments: evidence for a novel third conformation of plasminogen. Biochemistry. 1994;33(12):3599-3606.  PubMed, CrossRef
  9. Law RHP, Abu-Ssaydeh D, Whisstock JC. New insights into the structure and function of the plasminogen/plasmin system. Curr Opin Struct Biol. 2013;23(6):836-841. PubMed, CrossRef
  10. Miles LA, Castellino FJ, Gong Y. Critical role for conversion of Glu-plasminogen to Lys-plasminogen for optimal stimulation of plasminogen activation on cell surfaces. Trends Cardiovasc Med. 2003;13(1):21-30. PubMed, CrossRef
  11. Iusova EI, Savchuk ОV, Rybachuk VN. Conversion of Glu-plasminogen to Lys-plasminogen on the surface of platelet cell surface. Coll. sci. articles “Current problems in biochemistry” І Belarusian Biochem. Congr. 2016; 2: 105–111. (In Russian)
  12. Thorsen S, Müllertz S, Suenson E, Kok P. Sequence of formation of molecular forms of plasminogen and plasmin-inhibitor complexes in рlasma activated by urokinase or tissue-type plasminogen activator. Biochem J. 1984;223(1):179-187.  PubMed, PubMedCentral, CrossRef
  13. Wu HL, Chang BI, Wu DH, Chang LC, Gong CC, Lou KL, Shi GY.  Interaction of plasminogen and fibrin in plasminogen activation. J Biol Chem. 1990;265(32):19658-19664.  PubMed
  14. Grinenko TV, Tret’iachenko VG, Kudinov SA, Medved’ LV. Plasminogen-binding centers of molecules of fibrinogen, fibrin and products of their proteolysis. Biokhimiia. 1987; 52(10): 1732-1739. (In Russian). PubMed
  15. Taran LD, Makogonenko EM. The effect of kringles K1-3, K4 and K5 on lysis of fibrin clots caused by the activation of Glu- and Lys-plasminogen by a tissue activator. Ukr Biokhim Zhurn. 1989;61(4):31-36. (In Russian). PubMed
  16. Voskuilen M, Vermond A, Veeneman GH, van Boom JH, Klasen EA, Zegers ND, Nieuwenhuizen W. Fibrinogen lysine residue A alpha 157 plays a crucial role in the fibrin-induced acceleration of plasminogen activation, catalyzed by tissue-type plasminogen activator. J Biol Chem. 1987;262(13):5944-5946. PubMed
  17. Lezhen TI, Kudinov SA, Medved’ LV. Plasminogen-binding site of the thermostable region of fibrinogen fragment D. FEBS Lett. 1986;197(1-2):59-62.   PubMed, CrossRef
  18. Varetska TV. Microgeterogeneity of fibrinogen. Cryofibrinogen. Ukr Biokhim Zhurn. 1960; 32: 13–24.
  19. Grinenko TV, Rybachuk VN, Iatsenko TA, Kapustianenko LG. Plasminogen activation by tissue-type activator on DD-fragments of fibrin and Factor ХІІІа-cross-linked fibrinogen. Coll. sci. articles “Current problems in biochemistry” І Belarusian Biochem. Congr. 2016; 1: 72–77. (In Russian).
  20. Pozdnjakova TM, Musjalkovskaja AA, Ugarova TP, Protvin DD, Kotsjuruba VN. On the properties of fibrin monomer prepared from fibrin clot with acetic acid. Thromb Res. 1979;16(1-2):283-288.  PubMed, CrossRef
  21. Haverkate F, Timan G. Protective effect of calcium in the plasmin degradation of fibrinogen and fibrin fragments D. Thromb Res. 1977;10(6):803-812.
    PubMed, CrossRef
  22. Lugovskoy EV, Gritsenko PG, Kapustianenko LG, Kolesnikova IN, Chernishov VI, Komisarenko SV. Functional role of Вβ-chain NH2-terminal fragment in fibrin polymerization process. FEBS J. 2007; 274(17): 4540–4549. CrossRef
  23. Deutsch DG, Mertz ET. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970;170(3962):1095-1096. PubMed, CrossRef
  24. Kapustianenko LG, Iatsenko TA, Yusova EI, Grinenko TV. Isolation and purification of a kringle 5 from human plasminogen using AH-Sepharose. Biotechnologia Acta. 2014; 7(4): 35–42. CrossRef
  25. Kapustianenko LG. Polyclonal antibodies against human plasminogen kringle 5. Biotechnologia Acta. 2017; 10(3): 41–49. CrossRef
  26. Schägger H, Von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987;166(2):368-379.  PubMed, CrossRef
  27. Burnette WN. “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981;112(2):195-203.  PubMed, CrossRef
  28. Cavins JF, Friedman M. An internal standard for amino acid analyses: S-beta-(4-pyridylethyl)-L-cysteine. Anal Biochem. 1970;35(2):489-493.  PubMed, CrossRef
  29. Strong DD, Watt KWK, Cottrell BA, Doolittle RF. Amino acid sequence studies on the alpha chain of human fibrinogen. Complete sequence of the largest cyanogen bromide fragment. Biochemistry. 1979;18(24):5399-5404. PubMed, CrossRef
  30. Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature. 1997;389(6650):455-462.   PubMed, CrossRef
  31. Battistel MD, Grishaev A, An SS, Castellino FJ, Llinás M. Solution structure and functional characterization of human plasminogen kringle 5. Biochemistry. 2009;48(43):10208-10219.   PubMed, CrossRef
  32. Grinenko TV, Kapustianenko LG, Yatsenko TA, Yusova OI, Rybachuk VN. Plasminogen fragments K 1-3 and K 5 bind to different sites in fibrin fragment DD. Ukr Biochem J. 2016;88(3):36-45. PubMed, CrossRef
  33. Nieuwenhuizen W. Fibrin-mediated plasminogen activation. Ann N Y Acad Sci. 2001;936:237-246.   PubMed, CrossRef
  34. Verevka SV, Grinenko TV. Pseudo-functional interactions of plasminogen: molecular mechanisms and pathologic appearance. In: Advances in Medicine and biology. Nova Science Publishers, Inc.Ed: Leon V. Berhardt. 2011; 34: 35–61.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.