Ukr.Biochem.J. 2020; Volume 92, Issue 3, May-Jun, pp. 33-45

doi: https://doi.org/10.15407/ubj92.03.033

The fibrin Bβ125-135 site is involved in the lateral association of protofibrils

E. Lugovskoi1, N. Pydiura2, Y. Makogonenko1*, L. Urvant1,
P. Gritsenko1, I. Kolesnikova1, N. Lugovska1, S. Komisarenko1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine Kyiv;
*e-mail: ymakogonenko@gmail.com

Received: 19 May 2020; Accepted: 30 June 2020

Earlier we reported that during the human fibrinogen to fibrin transition a neoantigenic determinant was exposed in the Bβ119-133 fragment, where a hinge locus is situated. The fibrin-specific mAb FnI-3c and its Fab-fragment with epitope in this fragment inhibited the lateral association of protofibrils. We suggested that the epitope coincided with a site involved in this process. In this work we investigated the epitope location more precisely and defined a functional role for its exposure in the hinge locus of the molecule. It was found that mAb FnI-3c bound to human, horse and rabbit fibrins, all of which have Lys in the position corresponding­ to human BβK130, but not to bovine and rat fibrins, which have other amino acid residues in this position, strongly suggesting that BβK130 provides the integral part of the epitope. This fact, homology data, and structural biological analysis of the amino acid sequences around BβK130 indicate that the site of interest is localized within Bβ125-135. The synthetic peptides Bβ121-138 and Bβ125-135, unlike their scrambled versions, bound to mAb FnI-3c in SPR analysis. Both peptides, but not their scrambled versions, inhibited the lateral association of protofibrils. The FnI-3c epitope is exposed after fibrinopeptide A cleavage and desA fibrin monomer formation. Structural biological analysis of the fibrinogen to fibrin transition showed a distinct increase of flexibility in the hinge locus. We propose that the structural transformation in the fibrin hinge regions leads to the conformation necessary for lateral association of protofibrils.

Keywords: , , , ,


References:

  1. Medved L, Weisel JW. Recommendations for nomenclature on fibrinogen and fibrin. J Thromb Haemost. 2009;7(2):355-359. PubMed, PubMedCentral, CrossRef
  2. Doolittle RF, Goldbaum DM, Doolittle LR. Designation of sequences involved in the “coiled-coil” interdomainal connections in fibrinogen: constructions of an atomic scale model. J Mol Biol. 1978;120(2):311-325. PubMed, CrossRef
  3. Köhler S, Schmid F, Settanni G. The Internal Dynamics of Fibrinogen and Its Implications for Coagulation and Adsorption. PLoS Comput Biol. 2015;11(9):e1004346. PubMed, PubMedCentral, CrossRef
  4. Lugovskoy EV, Gritsenko PG, Kapustianenko LG, Kolesnikova IN, Chernishov VI, Komisarenko SV. Functional role of Bbeta-chain N-terminal fragment in the fibrin polymerization process. FEBS J. 2007;274(17):4540-4549. PubMed, CrossRef
  5. Yang Z, Mochalkin I, Doolittle RF. A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc Natl Acad Sci USA. 2000;97(26):14156-14161. PubMed, PubMedCentral, CrossRef
  6. Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF. Crystal structure of human fibrinogen. Biochemistry. 2009;48(18):3877-3886. PubMed, CrossRef
  7. Hanss M, Biot F. A database for human fibrinogen variants. Ann N Y Acad Sci. 2001;936:89-90. PubMed, CrossRef
  8. Lugovskoy EV, Gritsenko PG, Kolesnikova IN, Lugovskaya NE, Komisarenko SV. A neoantigenic determinant in coiled coil region of human fibrin beta-chain. Thromb Res. 2009;123(5):765-770. PubMed, CrossRef
  9. Brown JH, Volkmann N, Jun G, Henschen-Edman AH, Cohen C. The crystal structure of modified bovine fibrinogen. Proc Natl Acad Sci USA. 2000;97(1):85-90. PubMed, PubMedCentral, CrossRef
  10. Varetskaya TV. Microheterogeneity of fibrinogen. Cryofibrinogen. Ukr Biokhim Zhurn. 1960; 32(1): 13–27.
  11. Belitser VA, Varetskaja TV, Malneva GV. Fibrinogen-fibrin interaction. Biochim Biophys Acta. 1968;154(2):367-375. PubMed, CrossRef
  12. Lougovskoi EV, Gogolinskaya GK. Preparation of fibrin des-AA by thrombin. Ukr Biokhim Zhurn. 1999;71(4):107-108. PubMed
  13. Fenton JW 2nd, Fasco MJ, Stackrow AB. Human thrombins. Production, evaluation, and properties of alpha-thrombin. J Biol Chem. 1977;252(11):3587-3598. PubMed
  14. Deutsch DG, Mertz ET. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970;170(3962):1095-1096. PubMed, CrossRef
  15. Robbins KC, Summaria L. Plasminogen and plasmin. Methods Enzymol. 1976;45:257–273. PubMed, CrossRef
  16. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495-497. PubMed, CrossRef
  17. Lugovskoi EV, Makogonenko EM, Chudnovets VS, Derzskaya SG, Gogolinskaya GK, Kolesnikova IN, Bukhanevich AM, Sitak IN, Lyashko ED, Komisarenko SV. The study of fibrin polymerization with monoclonal antibodies. Biomed Sci. 1991;2(3):249-256. PubMed
  18. Li XM, Huskens J, Reinhoudt DN. Reactive self-assembled monolayers on flat and nanoparticle surfaces, and their application in soft and scanning probe lithographic nanjfabrication technologies. J Mater Chem. 2004; 14(20):2954-2971. CrossRef
  19. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-685. PubMed, CrossRef
  20. Mills D, Karpatkin S. The initial macromolecular derivatives of human fibrinogen produced by plasmin. Biochim Biophys Acta. 1972;271(1):163-173. PubMed, CrossRef
  21. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A. Comparative protein structure modelling using Modeller. Curr Protoc Bioinformatics. 2006;15(1):5.6.1-5.6.30. PubMed, PubMedCentral, CrossRef
  22. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291-325. PubMed, CrossRef
  23. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779-815. PubMed, CrossRef
  24. Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Sci. 2000;9(9):1753-1773.  PubMed, PubMedCentral, CrossRef
  25. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallog. 2010;66(Pt 1):12-21. PubMed, PubMedCentral, CrossRef
  26. de Groot BL, van Aalten DM, Scheek RM, Amadei A, Vriend G, Berendsen HJ. Prediction of protein conformational freedom from distance constraints. Proteins. 1997;29(2):240-251. PubMed, CrossRef
  27. Bakan A, Meireles LM, Bahar I. ProDy: protein dynamics inferred from theory and experiments. Bioinformatics. 2011;27(11):1575-1577. PubMed, PubMedCentral, CrossRef
  28. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33-38. PubMed, CrossRef
  29. DeLano WL. The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA 2002.
  30. Abyzov A, Bjornson R, Felipe M, Gerstein M. RigidFinder: a fast and sensitive method to detect rigid blocks in large macromolecular complexes. Proteins. 2010;78(2):309-324. PubMed, CrossRef
  31. Keating KS, Flores SC, Gerstein MB, Kuhn LA. StoneHinge: hinge prediction by network analysis of individual protein structures. Protein Sci. 2009;18(2):359-371. PubMed, PubMedCentral, CrossRef
  32. Okumura N, Terasawa F, Hirota-Kawadobora M, Yamauchi K, Nakanishi K, Shiga S, Ichiyama S, Saito M, Kawai M, Nakahata T. A novel variant fibrinogen, deletion of Bbeta111Ser in coiled-coil region, affecting fibrin lateral aggregation. Clin Chim Acta. 2006;365(1-2):160-167. PubMed, CrossRef
  33. Hanss M, Ffrench P, Vinciguerra C, Bertrand M-A, Mazancourt P. Four cases of hypofibrinogenemia associated with four novel mutations. J Thromb Haemost. 2005;3(10):2347-2349. PubMed, CrossRef
  34. Brennan SO, Davis RL, Lowen R, Ruskova A. Deletion of five residues from the coiled coil of fibrinogen (Bbeta Asn167_Glu171del) associated with bleeding and hypodysfibrinogenemia. Haematologica. 2009;94(4):585-588.  PubMed, PubMedCentral, CrossRef
  35. Kotlín R, Reicheltová Z, Malý M, Suttnar J, Sobotková A, Salaj P, Hirmerová J, Riedel T, Dyr JE. Two cases of congenital dysfibrinogenemia associated with thrombosis – Fibrinogen Praha III and Fibrinogen Plzen. Thromb Haemost. 2009;102(3):479-486. PubMed, CrossRef
  36. Marchi RC, Meyer MH, de Bosch NB, Arocha-Piñango CL, Weisel JW. A novel mutation (deletion of Aalpha-Asn 80) in an abnormal fibrinogen: fibrinogen Caracas VI. Consequences of disruption of the coiled coil for the polymerization of fibrin: peculiar clot structure and diminished stiffness of the clot. Blood Coagul Fibrinolysis. 2004;15(7):559-567. PubMed, CrossRef
  37. Jing P, Rudra JS, Herr AB, Collier JH. Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules. 2008;9(9):2438-2446. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.