Ukr.Biochem.J. 2021; Volume 93, Issue 4, Jul-Aug, pp. 26-36

doi: doi: https://doi.org/10.15407/ubj93.04.026

Тhiacalix[4]arene phosphonate C-800 as a novel fluorescent probe for zinc in living cells

V. I. Yavorovska1, R. D. Labyntseva1*, O. V. Bevza1, A. Y. Pugach1,
A. B. Drapailo2, S. O. Cherenok2, V. I. Kalchenko2, S. O. Kosterin1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv;
*e-mail: raisa.lab@gmail.com

Received: 07 April 2021; Accepted: 07 July 2021

Zn ions are significant for maintaining the proper human organism functioning, thus monitoring­ the zinc content in living cells and the development of sensitive tracking systems and sensors for Zn is particularly important. The purpose of the work was to study the properties of synthetic thiacalix[4]arene C-800 (5,11,17,23-tetrakis[(hydroxy-ethoxyphosphonyl)methyl])-25,26,27,28-tetrahydroxythiacalix[4]arene) as a fluo­rescent sensor for zinc ions in living cells. Our studies demonstrated that thiacalix[4]arene C-800 containing­   four hydroxy-ethoxyphosphonylmethyl groups on the upper rim exhibited fluorescent properties at 340 nm excitation wavelength. Fluorescence intensity of thiacalix[4]arene C-800 was increased significantly in the presence of Zn cations, while cations of other metals, such as Mg2+, Ca2+, Cd2+, and Pb2+ did not affect it. Computer modeling demonstrated that two Zn cations interact with the oxygen atoms of four hydroxy-ethoxyphosphonylmethyl groups. It was shown that thiacalix[4]arene C-800 quickly penetrated rat myometrial cells that led to an increased intracellular fluorescence level. The addition of Zn2+ to cells, stained with thiacalix[4]arene C-800, was followed an even greater increase of intracellular fluorescent signal intensity. No effect of thiacalix[4]arene C-800 on reactive oxygen species production in myometrial cells was detected as well as on cells viability in the range of its 50-250 μM concentrations. Thus, thiacalix[4]arene C-800 can potentially be used as a selective fluorescent probe for the detection of Zn2+ in living cells.

Keywords: , , , , ,


References:

  1. Andreini C, Bertini I. A bioinformatics view of zinc enzymes. J Inorg Biochem. 2012;111:150-156. PubMedCrossRef
  2. Andreini C, Bertini I, Rosato A. Metalloproteomes: a bioinformatic approach. Acc Chem Res. 2009;42(10):1471-1479. PubMed, CrossRef
  3. Frassinetti S, Bronzetti G, Caltavuturo L, Cini M, Croce CD. The role of zinc in life: a revie. J Environ Pathol Toxicol Oncol. 2006;25(3):597-610. PubMed, CrossRef
  4. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. Arch Toxicol. 2012;86(4):521-534. PubMed, CrossRef
  5. Kumar V, Kumar A, Singh S. Zinc Deficiency and Its Effect on the Brain: An Update. Int J Mol Genet Gene Ther. 2016;1(1):1-7. CrossRef
  6. Pfaender S, Sauer AK, Hagmeyer S, Mangus K, Linta L, Liebau S, Bockmann J, Huguet G, Bourgeron T, Boeckers TM, Grabrucker AM. Zinc deficiency and low enterocyte zinc transporter expression in human patients with autism related mutations in SHANK3. Sci Rep. 2017;7:45190. PubMedPubMedCentral, CrossRef
  7. Bao B, Prasad A, Beck FWJ, Suneja A, Sarkar F. Toxic effect of zinc on NF-kappaB, IL-2, IL-2 receptor alpha, and TNF-alpha in HUT-78 (Th(0)) cells. Toxicol Lett. 2006;166(3):222-228. PubMed, CrossRef
  8. Toxicological profile for zinc. 2005. Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333. Regime of access : https://www.atsdr.cdc.gov/toxprofiles/tp60.pdf.
  9. Lee MC, Yu WC, Shih YH, Chen CY, Guo ZH, Huang SJ, Chan JCC, Chen YR. Zinc ion rapidly induces toxic, off-pathway amyloid-β oligomers distinct from amyloid-β derived diffusible ligands in Alzheimer’s disease. Sci Rep. 2018;8(1):4772. PubMedPubMedCentral, CrossRef
  10. Kerns K, Zigo M, Sutovsky P. Zinc: A Necessary Ion for Mammalian Sperm Fertilization Competency. Int J Mol Sci. 2018;19(12):4097. PubMedPubMedCentral, CrossRef
  11. Murarka S, Mishra V, Joshi P, Kumar S. Role of Zinc in Reproductive Biology – An Overview. Austin J Reprod Med Infertil. 2015;2(2):1009.
  12. Huang Z, Lippard SJ. Illuminating mobile zinc with fluorescence from cuvettes to live cells and tissues. Methods Enzymol. 2012;505:445-468. PubMedPubMedCentral, CrossRef
  13. Nolan EM, Lippard SJ. Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry. Acc Chem Res. 2009;42(1):193-203. PubMedPubMedCentral, CrossRef
  14. Ran MQ, Yuan JY, Zhao YH, Mou L, Zeng X, Redshaw C, Zhao JL, Yamato T. A multichannel thiacalix[4]arene-based fluorescent chemosensor for Zn2+, F− ions and imaging of living cells. Supramol Chem. 2016;28(5-6):418-426.  CrossRef
  15. Wang Y, Peng X, Shi J, Tang X, Jiang J, Liu W. Highly selective fluorescent chemosensor for Zn2+ derived from inorganic-organic hybrid magnetic core/shell Fe3O4@SiO2 nanoparticles. Nanoscale Res Lett. 2012;7(1):86. PubMedPubMedCentral, CrossRef
  16. Jiang G, Shi F, Jia Y, Cui S, Pu S. A novel donor-acceptor fluorescent sensor for Zn 2+ with high selectivity and its application in test Paper. J Fluoresc. 2020;30(6):1567-1574. PubMedCrossRef
  17. Carpenter MC, Lo MN, Palmer AE. Techniques for measuring cellular zinc. Arch Biochem Biophys. 2016;611:20-29. PubMedPubMedCentral, CrossRef
  18. Kumar R, Sharma A, Singh H, Suating P, Kim HS , Sunwoo K, Shim I, Gibb BC, Kim JS. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chem Rev. 2019;119(16):9657-9721. PubMed, CrossRef
  19. Morohashi N, Narumi F, Iki N, Hattori T,  Miyano S. Thiacalixarenes. Chem Rev. 2006;106(12):5291-5316. PubMed, CrossRef
  20. Kumar R, Lee YO, Bhalla V, Kumar M, Kim JS. Recent developments of thiacalixarene based molecular motifs. Chem Soc Rev. 2014;43(13):4824-4870. PubMed, CrossRef
  21. Labyntsevа R, Yavorovska V , Bevza O, Drapaylo A, Kalchenko V, Kosterin S. Thiacalix[4]arenes Remove the Inhibitory Effects of Zn Cations on the Myosin ATPase Activity. Nanoscale Res Lett. 2018;13(1):224. PubMedPubMedCentral, CrossRef
  22. Kasyan O, Swierczynski D, Drapailo A, Suwinska K, Lipkowski J, Kalchenko V. Upper rim substituted thiacalix[4]arenes. Tetrahedron Lett. 2003;44(38):7167-7170.  CrossRef
  23. Kharchenko SG, Drapailo AB, Kalchenko OI, Yampolska GD, Shishkina SV, Shishkin OV, Kalchenko V I. Thia- and Sulfonyl-Calix[4]Arene Methylphosphonous Acids: Synthesis, Structure, and Amino Acids Binding. Phosphorus, Sulfur Silicon Related Elements. 2013;188(1-3):243-248. CrossRef
  24. Gangula PR, Dong YL, Yallampalli C. Rat myometrial smooth muscle cells express endothelial nitric oxide synthase. Hum Reprod. 1997;12(3):561-568. PubMed, CrossRef
  25. Vadivelu RK, Yeap SK, Ali AM, Hamid M, Alitheen NB. Betulinic Acid inhibits growth of cultured vascular smooth muscle cells in vitro by inducing G(1) arrest and apoptosis. Evid Based Complement Alternat Med. 2012;2012:251362. PubMedPubMedCentral, CrossRef
  26. Schindelin J, Arganda-Carreras I, Frise E,Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P,  Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-682. PubMedPubMedCentral, CrossRef
  27. Regime of access: http://www.hypercubeusa.com/Default.aspx?tabid=363
  28. Kimura E, Koike T.  Recent development of zinc-fluorophores. Chem Soc Rev. 1998;27(3):179-184. CrossRef
  29. Bugaenko LT, Ryabykh SM, Bugaenko AL. A nearly complete system of average crystallographic ionic radii and its use for determining ionization potentials. Moscow Univer Chem Bull. 2008;63(6):303–317. CrossRef
  30. Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. 2019;44(1):3-15. PubMedPubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.