Ukr.Biochem.J. 2021; Volume 93, Issue 5, Sep-Oct, pp. 52-62


Different-ligand and different-metal xylaratogermanates as effectors of Penicillium restrictum IMV F-100139 α-L-rhamnosidase and α-galactosidase

O. V. Gudzenko1*, N. V. Borzova1, L. D. Varbanets1,
I. I. Seifullina2, O. A. Chebanenko2, E. E. Martsinko2

1Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv;
2Odessa National University I.I. Mechnikov, Ukraine;

Received: 11 March 2021; Accepted: 22 September 2021

One of the ways to create new biologically active substances based on enzymes is to obtain highly efficient protein-complex structures. Studies in recent years have shown that the coordination compounds of “essential” germanium with biologically active hydroxycarboxylic and, in particular, with xylaric, acids are characterized by low toxicity and a wide range of pharmacological action. In addition, many of them have proven to be activators of various enzymes. In this regard, the aim of work was to study the effects of mixed ligand and heterometallic coordination compounds of germanium with xylaric acid on the catalytic and some physicochemical properties of Penicillium restrictum IMV F-100139 α-galactosidase and α-L-rhamnosidase. α-Galactosidase activity was determined using p-nitrophenyl-α-D-galactopyranoside as a substrate. The activity of α-L-rhamnosidase was determined using the Davis method. As modifiers of enzyme activity different-ligand and different-metalxylaratogermanates have been used. It was shown that the coordination compound (7) tris(bipyridine)nickel(II) μ-dihydroxyxylaratogermanate(IV) ([Ni(bipy)3]2[(OH)2Ge2(μ-HXylar)4Ge2(μ-OH)2]∙20Н2О∙2C2H5OH) exerted a significant effect on the catalytic properties of α-L-rhamnosidase and α-galactosidase from P. restrictum. The activation and thermal stabilization of P. restrictum α-L-rhamnosidase in the presence of (7) is based on the combination of all constituents of the effector molecule: cation [Ni(bipy)3]2+ and anion [(OH)2Ge2(μ-HXylar)4Ge2(μ-OH)2]4- metal complex, as well as the location of aromatic amino acids in the enzyme molecule. Weak non-covalent bonds between P. restrictum α-L-rhamnosidase molecules and compound (7) appear to create the conformation that is most favorable for the convergence of the active sites of the enzyme with the substrate.

Keywords: , , ,


  1. Álvarez-Cao ME, Cerdán ME, González-Siso MI, Becerra M. Bioconversion of Beet Molasses to Alpha-Galactosidase and Ethanol. Front Microbiol. 2019;10:405. PubMed, PubMedCentral, CrossRef
  2. Katrolia P, Rajashekhara E, Yan Q, Jiang Z. Biotechnological potential of microbial α-galactosidases. Crit Rev Biotechnol. 2014;34(4):307-317.  PubMed,  [c id=”″]
  3. Rahfeld P, Withers SG. Toward universal donor blood: Enzymatic conversion of A and B to O type. J Biol Chem. 2020;295(2):325-334. PubMed, PubMedCentral, CrossRef
  4. Li LJ, Liu XQ, Du XP, Wu L, Jiang ZD, Ni H, Li QB, Chen F. Preparation of isoquercitrin by biotransformation of rutin using α-L-rhamnosidase from Aspergillus niger JMU-TS528 and HSCCC purification. Prep Biochem Biotechnol. 2020;50(1):1-9. PubMed, CrossRef
  5. Seifullina II, Martsinko EE, Afanasenko EV. Design and synthesis of newhomo- and heterometal coordination compounds of germanium(IV) for preparationof low toxic drugs with a wide therapeutic action. Odessa National University Herald. Chemistry. 2015;20(4):6-17.
  6. Varbanets LD, Nidialkova NA, Borzova NV, Seifullina II, Martsinko EE, Chebanenko EA. Complexes of biscitratogermanates and biscitratostanates with metals are modifiers of Bacillus thuringiensis var. іsraelensis peptidases and Penicillium canescens, Cladosporium cladosporioides and Aspergillus niger α-galactosidases activities. Biotechnologia Acta. 2016; 9(3):52-60. CrossRef
  7. Tezuka T, Higashino A, Akiba M, Nakamura T. Organogermanium (Ge-132) suppresses activities of stress enzymes responsible for active oxygen species in monkey liver preparation. Adv Enzyme Res. 2017;5(2):13-23.  CrossRef
  8. Varbanets LD, Mаtselyukh EV, Gudzenko EV, Bоrzоvа NV, Sеifullina II, Khytrych GN. Coordinative compounds of zinc with N-substituted thiоcаrbаmоil-N′-pentаmethylеnsulfenаmides – activity mоdifiers of еnzymes of proteolytic and glycolytic action. Ukr Biokhim Zhurn. 2011;83(3):25-36. (In Russian). PubMed
  9. Gudzenko OV, Varbanets LD, Seifullina II, Martsinko EE, Pirozhok OV, Chebanenko EA. Germanium coordination compounds for increasing of α-L-rhamnosidase activity. Biotechnologia Acta. 2019;12(4):19-26.  CrossRef
  10. Borzova NV, Gudzenko OV, Varbanets LD, Nakonechnaya LT, Tugay TI. Glycosidase and proteolytic activity of micromycetes isolated from the Chernobyl exclusion zone. Mikrobiol Zh. 2020;82(2):51-59. (In Ukrainian).  CrossRef
  11. Chaplin ME, Kennedy JE. (Eds.) Carbohydrate analysis: a practical approach. Washington, Oxford: IRL Press, 1986.
  12. Davis WB. Determination of Flavanones in Citrus Fruits. Anal Chem. 1947;19(7):476–478. CrossRef
  13. Chebanenko EA, Seifullina II, Martsinko EE, Dyakonenko VV, Shishkina SV. Directed structure formation in tetranuclear xylaratogermanates(IV) with complex phenanthrolinecopper(II) cations. Rus J Inorg Chem. 2020;65(11):1703–1711.  CrossRef
  14. Chebanenko EA, Martsinko EE, Seifullina II, Dyakonenko VV, Shishkina SV. Structural features and properties of heteronuclear germanium(IV) and some 3d metal complexes with xylaric acid and 2,2′-bipyridine. J Struct Chem. 2018;59(6):1462-1468.  CrossRef
  15. Borzova NV, Varbanets LD. α-Galactosidase of Aspergillus niger: purification and properties. Biol Stud. 2007;1(1):53–64. CrossRef
  16. Nidialkova NА, Varbanets LD, Chernyshenko VO. Isolation and purification of Bacillus thuringiensis var. israelensis IМV В-7465 peptidase with specificity toward elastin and collagen. Ukr Biochem J. 2016;88(3):18-28. PubMed, CrossRef
  17. Wang QY, Lu J, Liao SM, Du QS, Huang RB.  Unconventional interaction forces in protein and protein-ligand systems and their impacts to drug design. Curr Top Med Chem. 2013;13(10):1141-1151. PubMedCrossRef
  18. Burghardt TP, Juranić N, Macura S, Ajtai K. Cation-pi interaction in a folded polypeptide. Biopolymers. 2002;63(4):261-272. PubMed, CrossRef
  19. Tu T, Li Y, Su X, Meng K, Ma R, Wang Y, Yao B, Lin Z, Luo H. Probing the role of cation-π interaction in the thermotolerance and catalytic performance of endo-polygalacturonases. Sci Rep. 2016;6:38413. PubMed, PubMedCentral, CrossRef
  20. Gromiha MM, Thomas S, Santhosh C. Role of cation-pi interactions to the stability of thermophilic proteins. Prep Biochem Biotechnol. 2002;32(4):355-362. PubMedCrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.