Ukr.Biochem.J. 2023; Volume 95, Issue 4, Jul-Aug, pp. 46-54

doi: https://doi.org/10.15407/ubj95.04.046

The influence of coordination compounds with malatogermanate/stannate anions and 1,10-phenanthroline cations of 3D metals on α-L-rhamnosidase activity of Penicillium tardum, Penicillium restrictum and Eupenicillium erubescens

O. V. Gudzenko1*, N. V. Borzova1, L. D. Varbanets1,
I. I. Seifullina2, O. E. Martsinko2, E. V. Afanasenko2

1D.K. Zabolotny Institute of Microbiology and Virology, National Academy of Siences of Ukraine, Kyiv;
2I.I. Mechnikova Odesa National University, Odesa, Ukraine;
*e-mail: alena.gudzenko81@gmail.com

Received: 01 May 2023; Revised: 15 July 2023;
Accepted: 7 September 2023; Available on-line: 12 September 2023

The search for effectors capable of influencing the catalytic activity of enzymes is an important area of modern enzymology. The aim of the study was to investigate the ability of 6 coordination compounds with malatogermanate/stannate anions and 1,10-phenanthroline cations of 3d metals to modify α-L-rhamnosidase activity of Penicillium tardum, Penicillium restrictum and Eupenicillium еrubescens strains. α-L-Rhamnosidase activity was determined by the Davis method using naringin as a substrate. It was demonstrated­ that [Ni(phen)3]2[{Sn(HMal)2(Mal)}Cl]•14H2O) in 0.1% concentration had the most pronounced activating effect on α-L-rhamnosidase activity of all strains studied. Noncompetitive inhibition of α-L-rhamnosidase in E. еrubescens by [Cu(phen)3]2[{Sn(HMal)2(Mal)}Cl]•10H2O was shown. The obtained results expand the idea of glycosidases possible activators and inhibitors and indicate the perspective of their use in modern biotechnological processes.

Keywords: , , , , , , ,


References:

  1. Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev. 2021;50(14):8003-8049. PubMed, PubMedCentral, CrossRef
  2. Choi JM, Han SS, Kim HS. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol Adv. 2015;33(7):1443-1454. PubMed, CrossRef
  3. Borzova N, Gudzenko O, Varbanets L. α-L-rhamnosidase from Penicillium tardum and Its Application for Biotransformation of Citrus Rhamnosides. Appl Biochem Biotechnol. 2022;194(10):4915-4929. PubMed, CrossRef
  4. Gudzenko OV, Borzova NV, Varbanets LD.The Influence of cultivation parameters on Penicillium restrictum α-L-Rhamnosidase activity. Mikrobiol Z. 2020;82(4):53-62. (In Ukrainian). CrossRef
  5. Gudzenko OV, Varbanets LD. Purification and physicochemical properties of Eupenicillium erubescens α-L-rhamnosidase. Mikrobiol Z. 2012;74(2):14-21. (In Russian). PubMed
  6. Gudzenko OV, Borzova NV, Varbanets LD, Seifullina II, Martsinko EE, Buchko OV, Pesaroglo А G. Influence of new types of biscitratogermanates on Penicillium restrictum α-L-rhamnosidase. Мicrobiol Z. 2023; 85(3): 3-11.
  7. Gudzenko ОV, Varbanets LD, Seifullina ІI, Chebanenko EА, Martsinko EЕ, Аfanasenko ЕV. The influence of coordinative tartrate and malatogermanate compounds on the activity of α-L-rhamnosidase preparations from Penicillium tardum, Eupenicillium erubescens and Cryptococcus albidus. Ukr Biochem J. 2020;92(4):85-95. CrossRef
  8. Varbanets LD, Mаtselyukh EV, Gudzenko EV, Bоrzоvа NV, Sеifullina II, Khitrich CN. Coordinative compounds of zinc with N-substituted thiоcаrbаmоil-N′-pentаmethylеnsulfenаmides – activity mоdifiers of еnzymes of proteolytic and glycolytic action. Ukr Biokhim Zhurn. 2011;83(3):25-36. (In Russian). PubMed
  9. Afanasenko E, Seifullina I, Martsinko E, Konup L, Fizer M, Gudzenko O, Borzova N. Supramolecular Salts of Fe(II)/Co(II)/Ni(II)/Cu(II)/Zn(II) 1,10-Phenanthroline Cations and Similar Complex Tartratostannate(IV) Anions: From Structural Features to Antimicrobial Activity and Enzyme Activation. ChemistrySelect. 2022;7(12): e202200280. CrossRef
  10. 10. Gudzenko OV, Borzova NV, Varbanets LD, Seifullina II, Chebanenko OA, Martsinko OE. Effect of different ligand and different ligand heterometal xylaratohermanates on the activity of α-L-rhamnosidases Eupenicillium erubescens, Cryptococcus albidus and Penicillium tardum. Мicrobiol Z. 2021;83(3):35-45. CrossRef
  11. Romero C, Manjón A, Bastida J, Iborra JL. A method for assaying the rhamnosidase activity of naringinase. Anal Biochem. 1985;149(2):566-571. PubMed, CrossRef
  12. Afanasenko E, Seifullina I, Martsinko E, Dyakonenko V, Shishkina S, Gudzenko O, Varbanets L. Supramolecular organization and enzyme-effector properties of double coordination salts with malatostannate/germanate(IV) anions and Fe(II), Co(II), Ni(II), Cu(II) 1,10-phenanthroline cations. J Mol Str. 2023;1271:133996. CrossRef
  13. Yadav V, Yadav PK, Yadav S, Yadav KDS. α-L-Rhamnosidase: A review. Process Biochem. 2010;45(8):1226-1235. CrossRef
  14. Rabausch U, Ilmberger N, Streit WR. The metagenome-derived enzyme RhaB opens a new subclass of bacterial B type α-L-rhamnosidases. J Biotechnol. 2014;191:38-45. PubMed, CrossRef
  15. Weignerová L, Marhol P, Gerstorferová D, Křen V. Preparatory production of quercetin-3-β-D-glucopyranoside using alkali-tolerant thermostable α-L-rhamnosidase from Aspergillus terreus. Bioresour Technol. 2012;115:222-227. PubMed, CrossRef
  16. Cui Z, Maruyama Y, Mikami B, Hashimoto W, Murata K. Crystal structure of glycoside hydrolase family 78 alpha-L-Rhamnosidase from Bacillus sp. GL1. J Mol Biol. 2007;374(2):384-398. PubMed, CrossRef
  17. Jung HA, Paudel P, Seong SH, Min BS, Choi JS. Structure-related protein tyrosine phosphatase 1B inhibition by naringenin derivatives. Bioorg Med Chem Lett. 2017;27(11):2274-2280. PubMed, CrossRef
  18. Zhao M, Du L, Tao J, Qian D, Shang EX, Jiang S, Guo J, Liu P, Su SL, Duan JA. Determination of metabolites of diosmetin-7-O-glucoside by a newly isolated Escherichia coli from human gut using UPLC-Q-TOF/MS. J Agric Food Chem. 2014;62(47):11441-11448. PubMed, CrossRef
  19. Gansukh E, Kazibwe Z, Pandurangan M, Judy G, Kim DH. Probing the impact of quercetin-7-O-glucoside on influenza virus replication influence. Phytomedicine. 2016;23(9):958-967. PubMed, CrossRef
  20. Lee YS, Huh JY, Nam SH, Moon SK, Lee SB. Enzymatic bioconversion of citrus hesperidin by Aspergillus sojae naringinase: enhanced solubility of hesperetin-7-O-glucoside with in vitro inhibition of human intestinal maltase, HMG-CoA reductase, and growth of Helicobacter pylori. Food Chem. 2012;135(4):2253-2259. PubMed, CrossRef
  21. Gudzenko OV, Borzova NV, Varbanets LD, Seifullina II, Chebanenko OA, Martsinko EE. Different-ligand and different-metal xylaratogermanates as effectors of Penicillium restrictum IMV F-100139 α-L-rhamnosidase and α-galactosidase. Ukr Biochem J. 2021;93(5):52-62. CrossRef
  22. Lopina OD. Enzyme Inhibitors and Activators. Ed. Murat Senturk. InTech, 2017. 268 p. CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.