DISCUSSION

The Editorial Board of The Ukrainian Biochemical Journal will gladly provide a venue for opinions, reactions and judgments on this paper.

UDC 577.35

doi: https://doi.org/10.15407/ubj92.04.124

TAUTOMERIC HYPOTHESIS: TO BE OR NOT TO BE? QUANTUM-MECHANICAL VERDICT

O. O. BROVARETS, D. M. HOVORUN

Institute of Molecular Biology and Genetics,
National Academy of Sciences of Ukraine, Ukraine;
e-mail: o.o.brovarets@imbg.org.ua

Received: 07 April 2020; Accepted: 15 May 2020

This paper represents itself comment on the work “Soler-Polo, D., Mendieta-Moreno, J.I., Trabada, D.G., Mendieta, J., Ortega, J. Proton Transfer in Guanine-Cytosine Base Pairs in B-DNA. J. Chem. Theory Comput. 2019, 15, 12, 6984-6991”. In this Comment it was outlined thoughts according the possibility for the Watson-Crick G-C DNA base pair to tautomerise by the Löwdin’s mechanism and so to cause spontaneous point mutations. Based on the comprehensive analysis, authors arrive to the conclusion that mechanism, which has been analyzed in work (J. Chem. Theory Comput. 2019, 15, 12, 6984-6991) is not possible.

Keywords: Spontaneous point mutations in DNA, proton transfer, Watson-Crick G-C DNA base pair, Löwdin’s mechanism.

D espite continuous and significant efforts of both theorists and experimenters, the clarification of the nature of the spontaneous point mutations in DNA is the topic, which importance for the needs of biology, biochemistry, biophysics and personified medicine could not be overestimated. Nowadays, it remains clear only in the general outlines [1].

In the recent work [2] with the application of the novel calculation approaches and algorithms on the modeling of the extra-cellular DNA, it was confirmed the previously reached conclusion that tautomerization of the Watson-Crick G-C DNA base pair by the Löwdin’s mechanism [3, 4] is not the source of the spontaneous point mutations, arising at the DNA replication [5, 6].

In this Comment we allow to ourselves to outline some thoughts according this topic and hope very much that they would be useful as to the authors of the work [3], so to the especially interested readers.

Choosing the appropriate model for the QM/MM calculations, in particular – the division of the investigated system on the QM and MM regions and their combination into the complete joint system, – is not so easy task, as it could be looking like from the first glance.

As it is broadly known, the nucleotides are elementary structural units of DNA. With the overview on this fact, it would be more correctly to consider H-bonded pair of nucleotides as the QM-region instead of the pair of nucleosides, as it was considered by the authors of the work [2]. Moreover, in order to avoid the so-called edge effect, in particular for the more adequate consideration of the stacking of the neighboring base pairs and also of the sugar-phos-
In the concrete surrounding to the all without exception G·C nucleobase pair tautomerization. Authors of the work [2] intuitively tested nucleotides as a testing object for the mutagenic potential of nucleotides, using at this the pair of the middle QM calculations for the three complementary pairs of phosphate residues, it would be more logical to provide with the authors of the work [2] model of the extra-cellular DNA – in particular, acid salt instead of the acid, absence of the proteins of replisome or at least their molecular imitation, free hydration etc. – as realistic biomolecular system found in the cell.

Also, authors of the work [2] stayed at the half of the road, considering only the intramolecular tautomerization of the G DNA base as a possible source of the spontaneous point mutations. At this, they leave the complementary C DNA base without any explanation outside the attention and consideration. Moreover, it was not taking into account neither proton tunneling [7], nor catalytical role of the water molecule [8] in order to accelerate this process in the single-stranded DNA.

In the paper [2] it was not considered and discussed at all the kinetical characteristics of the investigated processes of the mutagenic tautomerization, which are extremely important (!) [9, 10], since replication machinery is quite passive. Moreover, authors do not compare obtained data for the energy characteristics of the mutagenic tautomerization with the QM results of the others authors [5, 7]. So, obtained result ΔΔG = 2.4 kcal/mol (ε = 1) [2] significantly differs from the analytical value ΔG = 0.47 kcal/mol obtained at the MP2/aug-cc-pVTZ//MP2/6-311++G(d,p) level of theory for the isolated G·C DNA base pair [6]. In the continuum with a low dielectric constant (ε = 4) ΔG = -0.65 kcal/mol at standard conditions [5]. This fact is not even mentioned and commented in the work [2].

It also looking like not quite optimistic the quality of the used by the authors of the work [2] model of the extra-cellular DNA – in particular, acid salt instead of the acid, absence of the proteins of replisome or at least their molecular imitation, free hydration etc. – as realistic biomolecular system found in the cell.

And finally, the last, but not least. After the careful reading and analysis of this paper [2], the readers can doubt, whether the classical tautomeric hypothesis [15] is adequate within the framework of the Löwdin’s model [3, 4] and intramolecular mutagenic tautomerization of the DNA bases [7, 16]. Fortunately, there are no reasons for such suggestions.

The point is that nowadays it was discovered and basically substantiated novel mechanisms of the mutagenic tautomerization of the right [17] and so-called incorrect [18] DNA base pairs, which are active players in the field of the spontaneous point mutagenesis [1], giving tautomeric hypothesis “the second breath”, filling it with the novel physico-chemical sense. So, it could be reliably stated that this great idea [15] has passed the test of time.


TAUOMERNA ГІПОТЕЗА: БУТИ ЧИ НЕ БУТИ? КВАНТОВО-МЕХАНІЧНИЙ ВЕРДИКТ

O. O. Brovarets’, D. M. Hovorun

Інститут молекулярної біології і генетики НАН України, Київ; e-mail: o.o.brovarets@imbg.org.ua

спочатку можливості тауто-меризації Уотсон-Криківської пари основ G-C в ДНК відповідно до механізму Льовдіна, а відтак до спричинення спонтанних точкових мутацій. На основі всебічного аналізу автори дійшли висновку, що запропонований механізм є неможливим.

Ключові слова: спонтанні точкові мутації в ДНК, протонне перенесення, Уотсон-Криківська пара основ G-C в ДНК, механізм Льовдіна.

References