UDC 616-056.52+577.15

doi: https://doi.org/10.15407/ubj97.04.084

IN VIVO, IN VITRO, AND MOLECULAR DOCKING STUDY OF RAT PANCREATIC LIPASE INHIBITION USING ISOPROPYL SALICYLATE

NOOR M. MAHDI¹, SARAH A. YOUNUS², ABDALLAH F. AL-BURGUS¹. OMAR Y. AL-ABBASY^{3 \boxtimes}

Received: 30 April 2025; Revised: 11 July 2025; Accepted: 12 September 2025

Pancreatic lipase (PL) represents a significant treatment target that has been the focus of research on anti-obesity medications. Or listat is the only regularly used prescription that has been approved for long-term use. The discovery of new compounds for anti-obesity treatment based on PL inhibition can be achieved, in particular, by structure-based virtual screening with docking software. The aim of this research was to study isopropyl salicylate (IPS) anti-hyperlipidemic activity and inhibitory effect on rat pancreatic PL in comparison with or listat. Wistar rats were divided into four groups of 8 animals each: control; fed with a high-fat diet (HFD) for 12 weeks to produce hyperlipidemia; fed with HFD and Or listat (10 mg/kg BW daily); fed with HFD and IPS (10.81 mg/kg BW daily). It was shown that BW gain and lipase activity in the plasma of the high-fat diet rats treated with either or listat or isopropyl salicylate were reduced considerably compared with untreated rats. The pancreatic lipase was partially purified from the plasma of obese rats, and a kinetic study of the IPS effect identified a competitive inhibition mode with an assessed K_i of 30.53 mM. An in silico study of the interaction between IPS and rat pancreatic lipase-related protein 2 (PDB ID: 1BU8) was conducted. The binding energy value ΔG for the IPS-protein complex at the enzyme's active site was found to be -5.4 kcal/mol, while that for the or listat-protein complex was -4.4 kcal/mol, indicating the stronger interaction of the enzyme with isopropyl salicylate than with or listat.

Keywords: obesity, pancreatic lipase, inhibition, isopropyl salicylate, orlistat, rat pancreatic lipase-related protein 2, in silico study.

besity, which is characterized by an excessive accumulation of adipose tissue, has been linked to several chronic diseases, making individuals and healthcare systems more burdened [1, 2]. It is a growing threat to human health worldwide. Diabetes, cardiovascular disease, and movement disorders are major comorbidities associated with obesity [3, 4]. Additionally, there is a strong correlation between the prevalence of obesity and several neoplastic diseases [5], such as renal [6], pancreatic[7], and breast[8]. The main challenge in obesity is maintaining weight loss over the long term. This can be achieved through lifestyle modifications and pharmacological approaches [9]. After eating a high-fat meal, triglycerides (TG) are hydro-

lyzed by an enzyme called pancreatic lipase (PL) (EC 3.1.1.3). Since dietary fats are the main source of lipids, once absorbed in the intestines, these fat molecules are converted to TG and stored in the body as a reservoir for a major energy source[10]. It is a vital enzyme that catalyzes the breakdown of TG into monoglycerides (MG) and two molecules of free fatty acids [11, 12] as shown in Fig. 1.

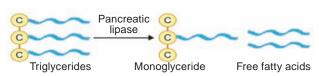


Fig. 1. Schematic illustration of pancreatic lipase action [10]

Finding pancreatic lipase inhibitors that can effectively reduce nutrient digestion and absorption is a key goal in treating obesity and related conditions [13]. One potential strategy for obesity treatment involves inhibiting pancreatic lipase activity, which decreases fat absorption [14, 15]. Orlistat, developed as an anti-obesity medication, is the only prescription drug approved for long-term use. It works by reducing dietary fat absorption through the inhibition of intestinal lipase [16]. Chauhan et al. [17] developed and tested various rhodanine-3-acetic acid derivatives as pancreatic lipase inhibitors. In vitro, synthetic aurone derivatives such as 6-hydroxyaurone, 6-dialkoxyaurone, 4-hydroxyacetone, and 6-alkoxyaurone suppressed PL activity. Spectrophotometric analysis demonstrated their inhibitory effects compared to orlistat [18]. Isopropyl salicylate (prop-2-yl-2-hydroxybenzoate) is the ester of isopropanol and salicylic acid. It is a salicylate that acts as an anti-inflammatory and pain-relieving compound [19]. Its lipophilicity makes it useful as a drug intermediate in synthesis or as a structural probe in biochemical research [20]. The ability of isopropyl salicylate (IPS) can incorporate into lipidrich environments, including enzyme active sites, increases its significance in pharmacological studies [21]. Along with its favorable safety profile, IPS may support its potential as an anti-obesity treatment, either alone or in combination with other compounds [22]. Computer-aided techniques, like structurebased virtual screening with docking software, can facilitate successful drug discovery by identifying new compounds targeting specific proteins [23, 24]. Our research aimed to isolate PL from fat rat plasma and evaluate the effectiveness of IPS as an inhibitor. Additionally, molecular docking supports this by revealing potential interactions between the inhibitor and rat pancreatic lipase-related protein (ID: 1BU8), highlighting its potential as an anti-obesity drug. The selection of IPS is based on its structural similarity to the substrate, as it contains an ester bond that the enzyme being studied can hydrolyze. Also, lipophilicity may improve its interaction with the active site of lipases and help mimic triglyceride substrates.

Material and Methods

Chemicals in this study, bovine serum albumin and p-nitrophenyl butyrate, were purchased from Merck Co. Isopropyl salicylate and carboxymethyl cellulose were obtained from Sigma-Aldrich Co. The instruments used included an Ultra-cooling Centri-

fuge (Heraeus-Christ GmbH Co., Germany), a UV-Visible spectrophotometer (Shemadzo Co., Japan), an electronic balance (A&D Company Ltd, Japan), and a Water Bath Gallen Kamp (B.Braun Co., Germany).

Preparation of high-fat diet. The high-fat diet (HFD) was prepared using the method described by Smine [25]. The HFD consists of typical foods subsequently saturated with melted lamb fat. After heating the fat to 100°C to liquefy it, the plugs were submerged in the hot fat for 15 min. After drying at room temperature, the HFD food was given.

Animals and experimental protocol design. We obtained male Wistar rats weighing between 190 and 200 grams from the University of Mosul's College of Veterinary Medicine's International Animal Care and Use Committee. Rats were housed in a typical pet store with free access to food and water, at 23 ± 5°C and a 12-hour light/dark cycle. The experiments on animals were carried out in compliance with the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes and the general ethical norms of animal experimentation. Following two weeks of acclimating, the rats were randomly grouped into four equal groups, each containing six rats, and received treatment based on Body Weight (BW) as follows [26]. Group 1: fed with standard laboratory diet and drinking water ad libitum and served as a control. Group 2: fed with a high-fat diet to produce hyperlipidemia for 12 weeks. Group 3: fed with HFD and Orlistat (10 mg/kg BW daily). Group 4: fed with HFD and IPS (10.81 mg/kg BW daily).

The Orlistat and IPS were administered orally for twelve successive weeks. The orlistat dosage was chosen based on a preceding study [27]. For dose determination, preliminary experience indicated this dose (14.4 mg/kg body weight, orally) was highly effective. Experimental subjects were freshly prepared immediately before administration, and each administration was based on the most recent recorded body weight.

Measurement of body. Each rat's body weight was measured on Day 0 and every week for the duration of the experiment using a digital balance scale. The weight difference was computed using the starting and ending body weights [28].

Collection of blood. When the experiment periods concluded, all of the rats were decapitated after fasting for 12 h continuously. To prevent clotting, each sample was put in a tube containing

ethylenediaminetetraacetic acid while being stirred. Using a centrifuge that was chilled to 4° C, the blood was centrifuged at $3000 \times g$ for 10 min. Following that, the plasma was extracted and stored for use in upcoming studies [26].

Estimation of protein. The concentration of total protein was measured at 540 nm using the Biuret method [29]. With bovine serum albumin serving as the reference, a calibration curve was developed.

Assay of PL. Pancreatic lipase activity was estimated using the method of Lee et al. [30]. The lipase catalyzes the hydrolysis of (10 mM) p-nitrophenyl butyrate (p-NPB) as a substrate. The produced p-nitrophenol was measured at 405 nm. Total enzyme activity (U): expressed in µmol/min (U), where 1 unit (U) is defined as the amount of lipase that hydrolyzes p-nitrophenyl butyrate (p-NPB) to release 1 µmol of p-nitrophenol per minute. Specific enzyme activity (U/mg): defined as total enzyme activity per milligram of total protein, used as an indicator of enzyme purity.

Purification of PL. Dialysis. About 6.3 ml of previously obtained plasma from HFD rats (Group 2) was collected and placed in a dialysis tube. The dialyzed was done against 10 mM phosphate buffer (pH 7.2) at 4°C four times, while buffer change was performed to partially purify the enzyme [31].

Ion exchange chromatography. The dialyzed solution was placed onto a 25×2.5 cm CM-Cellulose column, and a 10 mM phosphate buffer (pH 7.2) was added. The protein was eluted using a flow rate of 1 ml per minute. The protein was identified by monitoring the absorbance at 280 nm [32]. Following the assessment of the enzyme activity of the fractions, they were collected and lyophilized in preparation for their further application in inhibitory investigations [33].

Preparation of IPS. The stock solution of IPS was prepared at a concentration of 1 M.

Inhibition of PL. It was developed to inhibit the activity of the purified enzyme by incubating it with IPS for 15 minutes at 25 °C. The activity was measured at 405 nm with p-NPB as the substrate. The Lineweaver-Burk plot was utilized to examine the inhibitory mechanisms at substrate doses ranging from 0.5 to 3 mM.

The equation, as follows, was used in calculating the percentage of PL inhibition (I%):

$$I\% = [(A_0 - A)/A_0] \times 100,$$

where A_{o} – absorbance of the control; A – absorbance of the sample.

Molecular docking study. The AutoDock Vina 1.1.2 program for molecular docking studies was applied for molecular docking investigations. The 3D structure of rat pancreatic lipase-related protein 2 has been imported directly from the RCSB Protein Data Bank (https://www.rcsb.org) and obtained at a resolution of 1.8 angstroms. Before performing docking calculations for the chemical under study, all H₂O water molecules and the ligand were excluded. The ligand was constructed using ChemAxon Marvin Sketch 5.3.735, and its 3D structure was energy-minimized to produce a single, low-energy conformation, which was stored in mol2 format [34, 35]. Using Gaussian 09, the ligand structures were optimized and their energy was minimized. The protein and ligand were prepared using Auto Dock Tools (ADT) 1.5.6. Rat pancreatic lipase-related protein 2 was used to investigate the binding affinities of isopropyl salicylate and orlistat through simulating their molecular interactions with the target enzyme, rather than directly calculating binding energies.

For each ligand, a flexible docking mode was automatically generated and applied to carry out the docking simulation. To investigate the interactions between the ligand and the targeted proteins, Discovery Studio Visualizer (BIOVIA, Discovery Studio, v4.0.100.13345) was utilized. To investigate the interactions between the ligand and the targeted proteins, Discovery Studio Visualizer (BIOVIA, Discovery Studio, v4.0.100.13345) was utilized [36].

Statistical analysis. All the values were expressed as mean \pm SEM (standard error of the mean). Duncan's test compared the means using the SAS program (Proc. GLM, SAS program, version 9.3). The differences at $P \le 0.05$ were considered statistically significant.

Result and Discussion

Effect of Orlistat and IPS on body weight. We were able to create representative curves of the development of BW by regularly monitoring the evolution of BW in each of the four groups of rats over 12 weeks. According to our findings, the animals' BW significantly increases from the first to the last day of the HFD diet (Fig. 2). Indeed, BW improved in control rats from 195.54 \pm 4.37 to 308.86 \pm 3.94 g and in HFD diet-receiving rats from 207.12 \pm 2.36 to 411.70 \pm 5.33 g.

When compared to the control group, the BW gain was considerably reduced by treatment with

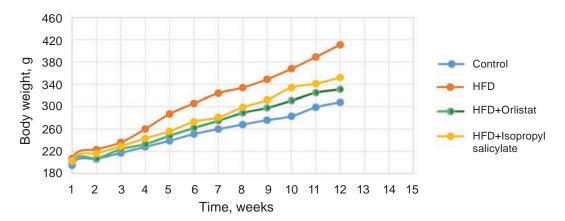


Fig. 2. Effects of Orlistat and isopropyl salicylate on body weights

Table 1. Effect of IPS doses on PL activity in rats

Dose of IPS, mg/						
kg BW	Control	3.60	7.20	10.81	14.41	18.02
Lipase activity,						
U/ml	0.371±0.064a	0.315±0.049 ^b	0.292 ± 0.024^{bc}	0.253±0.040 ^d	0.262±0.056 ^d	0.270 ± 0.058^{cd}

Note. Values are given as means \pm standard error (n = 5). Superscript letters indicate significant differences between groups horizontally. Values that do not share the same letter are significantly different ($P \le 0.05$)

orlistat and IPS. BW changed from 201 ± 2.91 g to 331.30 ± 9.62 g and from 203 ± 1.75 to 352 ± 8.24 , respectively. This indicates that whereas regular ingestion of HFD causes obesity and its associated difficulties, normal food consumption has no detrimental consequences on animal health. The BW is correlated with the food's composition rather than how much is eaten each day.

Effective dose determination in healthy rats. Table 1 illustrates the dose-dependent effect of IPS on PL activity in healthy rats. It turned out that all the doses used led to a significant decrease in the enzyme activity. The most potent of the tested doses was 10.81 mg/kg body weight, which lowered lipase activity significantly to $0.253 \pm 0.04^{\rm d}$ U/ml, while that of the control was $0.371 \pm 0.064^{\rm a}$ U/ml. This is an expression of statistically significant PL activity inhibition.

High-fat diet treatment increased significantly the activity of lipase by 0.491 ± 0.083^a U/ml in comparison to the control group, 0.337 ± 0.079^c U/ml. Conversely, the activity of lipase decreased significantly to 0.391 ± 0.063^b and 0.414 ± 0.034^b after treatment with orlistat and IPS, respectively, com-

pared with the high-fat diet rats group (Table 2). Both treatments had a close effect and there was no significant difference between them, but Orlistat showed a slightly stronger impact than IPS.

Purification of PL. Table 3 presents data indicating that the specific activity increased to 3.24 U/ mg protein following the dialysis process, in comparison to the crude enzyme with a purification fold of 3.02. Following the dialyzed enzyme run through a CM-cellulose column, a single isoenzyme (Fig. 3) with a purification fold of 30.09 and a specific activity value of 32.20 U/mg protein was produced. Most animal tissues contain lipases. It was isolated from rat liver by Claycomb and Kilsheimer [37]. Gastric lipase and PL are the two primary enzymes in mammals that break down neutral fats [38]. Also, PL has been purified and characterized according to its chemical stability and activity at pH and temperature [39]. Using cation exchange resin, a single peak of lipase was extracted from adult pancreatic juice [40].

The effect of the IPS compound on the lipase activity. Table 4 shows the inhibitory effect of purified PL activity by using different concentrations of IPS. It was observed that the increase in the inhibi-

Table 2. Effects of IPS optimal dose (10.81 mg/kg BW) on PL activity in rats fed HDF

Rat groups	Control	HFD	HFD+ Orlistat	HFD+ IPS
Lipase activity, U/ml	$0.337 \pm 0.079^{\circ}$	0.491 ± 0.083^{a}	0.391 ± 0.063^{b}	0.414 ± 0.034^{b}

Note. Values are given as means \pm standard error (n = 5). Superscript letters indicate significant differences between groups horizontally. Values that do not share the same letter are significantly different ($P \le 0.05$)

Table 3. Purification steps of PL from plasma of obese rats

Purification steps	Total volume, ml	Total protein, mg	Total activity, U*	Specific activity (U/ mg protein) ×10 ⁻³	Yield, %	Purification fold
Crude	6.3	364.1	0.390	1.07	100	_
Dialysis	6.9	220.8	0.717	3.24	183.84	3.02
Ion exchange	23.2	28.07	0.904	32.20	231.79	30.09

Note. U^* – unit refers to an amount of lipase that hydrolyzes p-nitrophenyl butyrate to release one micromole of p-nitrophenol per minute

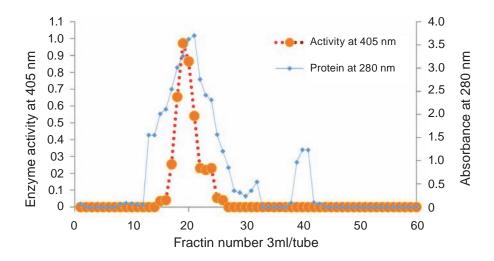


Fig. 3. Partial purification of rat PL by CM-cellulose resin

Table 4. Effect of IPS on the activity of lipase

Inhibitor, mM	Activity at 405 nm	Inhibitory effect, %	
Control	0.76	0.00	
20	0.58	23.69	
40	0.50	34.03	
60	0.41	46.20	
80	0.23	69.50	
100	0.20	73.29	

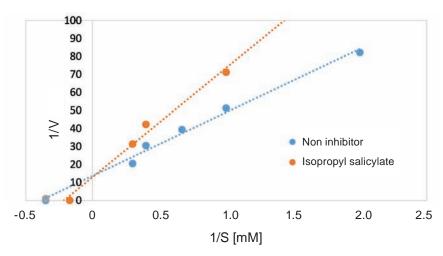


Fig. 4. Inhibition mode of purified PL by isopropyl salicylate

tory effect was directly proportional to the concentration of the inhibitor and was 73.29 at 100 mM.

The value of IC_{50} was calculated by the equation: $IC_{50} = 50$ -b/a by using the equation of the straight line, where a and b represent the slope and intercept values, respectively, and was found to be 62 mM.

Mode of inhibition. The Lineweaver-Burk plot demonstrates that enzyme activity was inhibited by 62 mM of IPS as an inhibitor. The results indicated that the inhibition mode was competitive (Fig. 4). The $V_{\rm max}$ value was calculated to be stable at 0.08 U/ml, while the $K_{\rm m}$ value increased from 2.85 to 5.88 mM. The inhibition constant $K_{\rm i}$ was calculated to be 30.53 mM.

A compound IPS is an ester compound. In this way, it is similar to the substrate para-nitrophenyl butyrate structure. This rationale explains why this compound is inhibited competitively, and this agrees with the inhibition of purified pecan kernel lipase activity by 1,4-diacetoxybenzene [11]. Also, competitive inhibition of PL was noted by saponin, platycodin with a K₁ of 0.18 mM [41] and carnosic acid with a K_i of 5.4 μ g/ml [42]. On the other hand, a polyphenol called licochalcone A demonstrated inhibition of PL at 35 μg/ml reversibly and non-competitively, exhibiting a K, value of 11.2 µg/ml [43]. At concentrations ranging from 1.25 to 100 µg/ml, cyanidin, epicatechin, petunidin, and peonidin all decreased PL activity *in vitro*. All of these drugs were found to have an uncompetitive inhibitory mechanism [44].

Molecular docking analysis. Molecular docking studies identified the binding mechanisms of IPS with rat pancreatic lipase-related protein 2. Fig. 5 (A-

C) elucidates the formation of the IPS ligand-protein complex in active site of rat pancreatic lipase-related protein (ID: 1BU8), with a $\Delta G_{\text{binding energy}}$ of -5.4 kcal/mol. The produced complex became stable by five hydrogen bonds (green dotted lines) via amino acids, SER A:53,53, ALA A:54, and THR A:55, 55. Different colored dotted lines show diverse types of bonding interactions (like pi-alkyl with PHE A:38,38, Van der Waals, and Donor-Donor).

The Fig. 6 (A-C) shows the formation of compound or listat ligand-protein complex in the active site of pancreatic lipase enzyme (ID: 1BU8) with $\Delta G_{\text{binding energy}}$ of -4.4 kcal/mol. The produced complex was become stable by five hydrogen bonds (green dotted lines) via four amino acids, ARGA:39, 39, TYR A:49, HIS A:75, and ASP A:83. Along altered kinds of bonding interactions (like pi-alkyl with LEUA:86, 39, 87, CYS A:103, TYR A:41, and Van der Waals) are shown by different color dotted lines.

Docking experiments using AutoDock Vina software showed that quercetin binds to the active site of pancreatic lipase. The resulting complexes showed good overlap of the flavonoid positions within the enzyme's active site. The phenyl rings of the flavonoids established stacking interactions with the hydrophobic aromatic active site residues (Phe 78, Pro 181, Tyr 115, and Phe 216). However, myricetin was found to bind near the catalytic serine (Ser 153) through hydrogen bonds [45, 46]. The most powerful binding energy against the PL protein was demonstrated by epicatechin, peonidin, and cyanidin in a prior molecular docking study. The protein target comprising residues Glu 102, Ser 129, Ile 97, and Trp 270 hotspots for protein binding showed the greatest

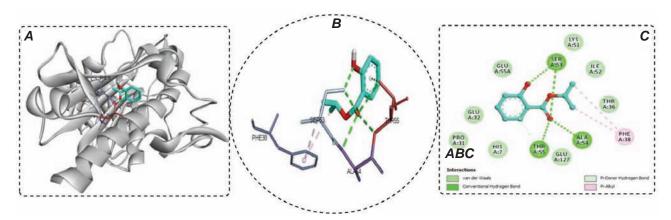


Fig. 5. A – Illustrates the interactions between the pancreatic lipase enzyme (ID: 1BU8) in a 3D ribbon form and Isopropyl salicylate, shown in a stick model with amino acids of the enzyme (ID: 1BU8). B – Depicts specific amino acid residue interactions with Isopropyl salicylate in a 3D model. C – Shows 2D interactions of Isopropyl salicylate with specific amino acids

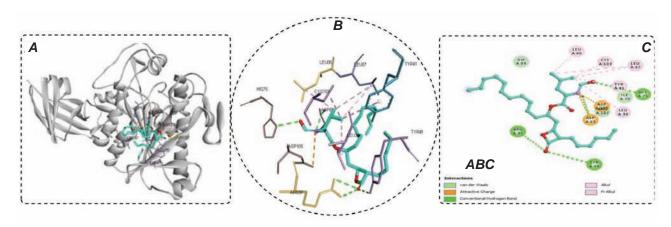


Fig. 6. A – Illustrates the interactions between the pancreatic lipase enzyme (ID: 1BU8) in a 3D ribbon form and orlistat, shown in a stick model with amino acids of the enzyme (ID: 1BU8). **B** – Depicts specific amino acid residue interactions with orlistat in a 3D model. **C** – Shows 2D interactions of orlistat with specific amino acids

binding [44]. Orlistat has previously been shown to have reversible covalent inhibition on an active site of Ser 152, and its long hydrophobic chains bind to residues in the lid domain, particularly Gly 76 to Phe 80 and Leu 213 to Met 217 of PL [47]. Notably, Ser152 is a crucial amino acid in the catalytic triad (Ser 152- Asp 176- His 263) on an enzyme, while Gly 76, Phe 77, Ile 78, Asp 79, and Phe 215 are residues found in a lid domain [48].

Conclusion. Obesity is a major issue of public health worldwide that is alarmingly growing worse each passing day, and decreasing calorie intake through intestinal absorption-related techniques. As a result, the PL breaks down dietary lipids that

are ingested during meals. The structure of lipase's natural substrate serves as the basis for the usual tactic employed in PL inhibitors. *In vivo*, the compound isopropyl salicylate exhibited good anti-hyperlipidemic activity and an inhibitory effect on PL activity when compared to orlistat. PL was purified and then *in vitro* inhibited by IPS. The kinetics data display a competitive inhibition with a K_i of 30.53 mM. As a supportive study and to detect the interactions between this inhibitor and rat pancreatic lipase-related protein 2 (PDB ID: 1BU8). *In silico* study was conducted. The IPS ligand-protein complex at the enzyme's active site had a binding energy value ΔG of -5.4 kcal/mol. However, the $\Delta G_{\text{binding energy}}$ value of

the orlistat-protein complex was -4.4 kcal/mol. This explains the stronger binding and interaction of isopropyl salicylate with the enzyme than with Orlistat.

Conflict of interest. Authors have completed the Unified Conflicts of Interest form at http://ukrbiochemjournal.org/wp-content/uploads/2018/12/coi disclosure.pdf and declare no conflict of interest.

Funding. This research had no external funding.

Acknowledgments. This work's author(s) would like to express their gratitude to everyone who helped bring this effort to fruition. Special mention should be given to the University of Mosul, the Department of Chemistry, and the College of Education for Pure Sciences.

IN VIVO, IN VITRO ТА МОЛЕКУЛЯРНИЙ ДОКІНГ ДОСЛІДЖЕННЯ ІНГІБУВАННЯ ПАНКРЕАТИЧНОЇ ЛІПАЗИ ЩУРІВ ІЗОПРОПІЛСАЛІЦИЛАТОМ

Noor M. Mahdi¹, Sarah A. Younus², Abdallah F. Al-Burgus¹, Omar Y. Al-Abbasy³⊠

¹General Directorate of Education in Nineveh, Mosul, Iraq; ²Department of Chemistry and Biochemistry, College of Medicine, University of Nineveh, Mosul, raq; ³Department of Chemistry, College of Education for Pure Science, University of Mosul, Mosul, Iraq; □ e-mail: chem.omar1978@uomosul.edu.iq

Панкреатична ліпаза (ПЛ) є важливою мішенню для лікування і знаходиться в центрі уваги досліджень з розробки препаратів проти ожиріння. Орлістат - єдиний рецептурний препарат, який регулярно використовується і схвалений для тривалого застосування. Пошук нових сполук для лікування ожиріння на основі інгібування ПЛ може бути досягнуто, зокрема, за допомогою структурного докінгскринінгу. Метою даного дослідження було антигіперліпідемічної ізопропілсаліцилату (ІПС) і його інгібуючої дії на панкреатичну ліпазу щурів у порівнянні з орлістатом. Щурів лінії Вістар було розподілено на чотири групи по 8 тварин у кожній: контрольна група; група, яка отримувала дієту з високим вмістом жирів (ЖД) протягом 12 тижнів для фор-

мування гіперліпідемії; група, яка отримувала ЖД і орлістат (10 мг/кг маси тіла на день); група, яка отримувала ЖД і ІПС (10,81 мг/кг маси тіла на день). Було показано, що приріст маси тіла і активність ліпази в плазмі крові щурів, які отримували ЖД і орлістат або ізопропілсаліцилат, значно знижувалися в порівнянні з щурами, які не отримували лікування. Панкреатична ліпаза була частково очищена з плазми крові щурів з ожирінням, і кінетичне дослідження ефекту ІПС виявило конкурентний характер інгібування зі значенням К. 30,53 мМ. Було проведено in silico дослідження взаємодії між ІПС і протеїном 2 панкреатичної ліпази щурів (PDB ID: 1BU8). Значення енергії зв'язування ΔG для комплексу ІПС-протеїн в активному центрі ензиму становило -5,4 ккал/моль, в той час як для комплексу орлістат-протеїн ΔG становило -4,4 ккал/моль, що вказує на більш сильну взаємодію ензиму з ізопропілсаліцилатом, ніж з орлістатом.

Ключові слова: ожиріння, панкреатична ліпаза, інгібування, ізопропілсаліцилат, орлістат, протеїн 2 панкреатичної ліпазои щурів, *in silico* дослідження.

References

- 1. Prendergast H, Tyo C, Colbert C, Kelley M, Pobee R. Medical complications of obesity: heightened importance in a COVID era. *Int J Emerg Med.* 2022; 15(1): 29.
- 2. Alrushdi FMM, Al-Abaasy OYM, Al-Saffar RN, Abbood HY, Al-Hamairy AK, Saleh MY, Abdelzaher H, Abdelzaher MA, Kenawy MA. *In vitro:* inhibition of partially purified pancreatic ovine lipase by willow bark extracts. *J Biosci Appl Res.* 2025; 11(1): 168-179.
- 3. Powell-Wiley TM, Poirier P, Burke LE, Després JP, Gordon-Larsen P, Lavie CJ, Lear SA, Ndumele CE, Neeland IJ, Sanders P, St-Onge MP. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. *Circulation*. 2021; 143(21): e984-e1010.
- Rashan AI, Altaee RT, Salh FS, AL-Abbasy OY, Al-Lehebe N. The role of polyamines in plants: A review. *Plant Sci Today*. 2023; 10(sp2): 164-171.
- 5. Berger NA. Obesity and cancer pathogenesis. *Ann N Y Acad Sci.* 2014; 1311(1): 57-76.

- Gluba-Brzózka A, Rysz J, Ławiński J, Franczyk B. Renal Cell Cancer and Obesity. *Int* J Mol Sci. 2022; 23(6): 3404.
- 7. Eibl G, Rozengurt E. Obesity and Pancreatic Cancer: Insight into Mechanisms. *Cancers* (*Basel*). 2021; 13(20): 5067.
- 8. Devericks EN, Carson MS, McCullough LE, Coleman MF, Hursting SD. The obesity-breast cancer link: a multidisciplinary perspective. *Cancer Metastasis Rev.* 2022; 41(3): 607-625.
- Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. *Nat Rev Drug Discov.* 2022; 21(3): 201-223.
- 10. Mhatre SV, Bhagit AA, Yadav RP. Pancreatic lipase inhibitor from food plant: Potential molecule for development of safe anti-obesity drug. *MGM J Med Sci.* 2016; 3(1): 34-41.
- 11. Alabbas K, Salih OA, Al-Abbasy OY. Isolation, purification, and characterization of pecan nut lipase and studying its affinity towards pomegranate extracts and 1,4-Diacetoxybenzene. *Iraqi J Sci.* 2022; 63(3): 908-922.
- 12. Lim SY, Steiner JM, Cridge H. Lipases: it's not just pancreatic lipase! *Am J Vet Res.* 2022; 83(8): ajvr.22.03.0048.
- 13. Chakhtoura M, Haber R, Ghezzawi M, Rhayem C, Tcheroyan R, Mantzoros CS. Pharmacotherapy of obesity: an update on the available medications and drugs under investigation. *EClinicalMedicine*. 2023; 58: 101882.
- 14. Liu TT, Liu XT, Chen QX, Shi Y. Lipase Inhibitors for Obesity: A Review. *Biomed Pharmacother*. 2020; 128: 110314.
- 15. Tuzimski T, Petruczynik A. New trends in the practical use of isoquinoline alkaloids as potential drugs applicated in infectious and non-infectious diseases. *Biomed Pharmacother*. 2023; 168: 115704.
- Chanoine JP, Hampl S, Jensen C, Boldrin M, Hauptman J. Effect of orlistat on weight and body composition in obese adolescents: a randomized controlled trial. *JAMA*. 20055; 293(23): 2873-2883.
- 17. Chauhan D, George G, Sridhar SNC, Bhatia R, Paul AT, Monga V. Design, synthesis, biological evaluation, and molecular modeling studies of rhodanine derivatives as pancreatic lipase inhibitors. *Arch Pharm (Weinheim)*. 2019; 352(10): e1900029.

- 18. Thi Vo CV, Thanh Nguyen T, Ngoc Dang T, Quoc Dao M, Thao Vo V, Thi Tran O, Thanh Vu L, Tran TD. Design, synthesis, biological evaluation and molecular docking of alkoxyaurones as potent pancreatic lipase inhibitors. *Bioorg Med Chem Lett.* 2024; 98: 129574.
- 19. Rainsford KD. Aspirin and related drugs. 2004: CRC Press, 2004. 800 p.
- 20. Luo J, Liao S, Zhang B, Lin X. Study on new technology of synthesizing isopropyl salicylate. *Modern Chem Industry*. 2000; 20(9): 42-44.
- 21. Najjar A, Grégoire S, Nicol B, Natsch A, Golbamaki N, Boisleve F, Irizar A, Wall B, Swinscoe A, Masini-Etévé V, Joshi K, Api AM, Griem P, Reis A, Hewitt NJ, Cardamone E. Grouping of chemicals for safety assessment: the importance of toxicokinetic properties of salicylate esters. *Arch Toxicol.* 2025; 99(3): 995-1010.
- 22. Rayalam S, Della-Fera MA, Baile CA. Phytochemicals and regulation of the adipocyte life cycle. *J Nutr Biochem*. 2008; 19(11): 717-726.
- 23. Wichapong K, Rohe A, Platzer C, Slynko I, Erdmann F, Schmidt M, Sippl W. Application of docking and QM/MM-GBSA rescoring to screen for novel Myt1 kinase inhibitors. *J Chem Inf Model*. 2014; 54(3): 881-893.
- 24. Al-Burgus AF, Ali OT, Al-Abbasy OY. New spiro-heterocyclic coumarin derivatives as antibacterial agents: design, synthesis and molecular docking. *Chimica Techno Acta*. 2024; 11(3): 202411308.
- 25. Smine S. Obesity induced by a highly fat diet (HFD) and protecting effect of a grape polyphenolic extract (GSSE): a proteomic approach. Normandie Université; Université de Tunis El Manar, 2017.
- 26. Wahabi S, Rtibi K, Atouani A, Sebai H. Anti-Obesity Actions of Two Separated Aqueous Extracts From Arbutus (*Arbutus unedo*) and Hawthorn (*Crataegus monogyna*) Fruits Against High-Fat Diet in Rats via Potent Antioxidant Target. *Dose Response*. 2023; 21(2): 15593258231179904.
- 27. Zaitone SA, Essawy S. Addition of a low dose of rimonabant to orlistat therapy decreases weight gain and reduces adiposity in dietary obese rats. *Clin Exp Pharmacol Physiol.* 2012; 39(6): 551-559.
- 28. Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani F, Fernandes AA,

- Cicogna AC, Novelli Filho JL. Anthropometrical parameters and markers of obesity in rats. *Lab Anim.* 2007; 41(1): 111-119.
- 29. Robyt JF, White BJ. Biochemical techniques: theory and practice. Monterey, Calif.: Brooks/Cole Pub. Co., 1987. 407 p.
- 30. Lee D, Koh Y, Kim K, Kim B, Choi H, Kim D, Suhartono MT, Pyun Y. Isolation and characterization of a thermophilic lipase from bacillus thermoleovorans ID-1. *FEMS Microbiol Lett.* 1999; 179(2): 393-400.
- 31. Al-Abbasy OY, Ali WI, Younis SA. Study on inhibitory effect of Rosmarinus officinalis L extracts and Quercitine on partially purified cow's brain polyamine oxidase. *Biochem Cell Arch.* 2020; 20(2): 5617-5625.
- 32. Taqi HM, Al-Shahery YJ, Al-Abbasy OY. Innovative Isolation of Nostoc minutum Protein for Antibacterial Applications. *Egypt J Aquatic Biol Fisheries*. 2024; 28(6): 2055-2071.
- 33. Rashan AI, Al-Abbasy OY. Inhibitory and kinetic study of partially purified tyrosinase from Iraqi quince fruit. *Plant Cell Biotech Mol Biol.* 2021; 22(23-24): 1-14.
- 34. Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, Lee RE. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. *J Chem Inf Model*. 2009; 49(2): 444-460.
- 35. Sadoon AM, Saeed NHM. Theoretical prediction of rate constant of some N-phenylacetamide substitutes reactions with chloramine-T using ab-initio and statistical calculations. *AIP Conf Proc.* 2021; 2371: 120003.
- 36. Al-Burgus AF, Thanoon-Ali O, and AL-Abbasy OY. Design, synthesis and molecular docking of new spiro heterocyclic coumarin as antibacterial agents. *Rev Roum Chim.* 2024; 69(7-8): 399-404.
- 37. Claycomb WC, Kilsheimer GS. Purification and properties of a lipase from rat liver mitochondria. *J Biol Chem.* 1971; 246(23): 7139-7143.
- 38. Phan CT, Tso P. Intestinal lipid absorption and transport. Front Biosci. 2001; 6(3): D299-D319.
- 39. Woolley P, Petersen SB. Lipases: their structure, biochemistry and application. Cambridge University Press, 1994. 377 p.

- 40. Iizuka K, Higurashi H, Fujimoto J, Hayashi Y, Yamamoto K, Hiura H. Purification of human pancreatic lipase and the influence of bicarbonate on lipase activity. *Ann Clin Biochem.* 1991; 28(Pt 4): 373-378.
- 41. Zhao HL, Kim YS. Determination of the kinetic properties of platycodin D for the inhibition of pancreatic lipase using a 1,2-diglyceride-based colorimetric assay. *Arch Pharm Res.* 2004; 27(10): 1048-1052.
- 42 Ninomiya K, Matsuda H, Shimoda H, Nishida N, Kasajima N, Yoshino T, Morikawa T, Yoshikawa M. Carnosic acid, a new class of lipid absorption inhibitor from sage. *Bioorg Med Chem Lett.* 2004; 14(8): 1943-1946.
- 43. Won SR, Kim SK, Kim YM, Lee PH, Ryu JH, Kim JW, Rhee HI. Licochalcone A: A lipase inhibitor from the roots of *Glycyrrhiza uralensis*. *Food Res Int.* 2007; 40(8): 1046-1050.
- 44. Rajan L, Das N, Chakkyarath V, Natarajan J, Palaniswamy D, Shaw S, Kumar Mishra S. Pancreatic lipase related protein 1 as a potential target in triglyceride breakdown: A molecular docking studies with *in vitro* appraisal. *Results Chem.* 2023; 5: 100960.
- 45. Martinez-Gonzalez AI, Alvarez-Parrilla E, Díaz-Sánchez ÁG, de la Rosa LA, Núñez-Gastélum JA, Vazquez-Flores AA, Gonzalez-Aguilar GA. In vitro Inhibition of Pancreatic Lipase by Polyphenols: A Kinetic, Fluorescence Spectroscopy and Molecular Docking Study. *Food Technol Biotechnol.* 2017; 55(4): 519-530.
- 46. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. *J Comput Chem.* 2010; 31(2): 455-461.
- 47. Hadváry P, Sidler W, Meister W, Vetter W, Wolfer H. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. *J Biol Chem.* 1991; 266(4): 2021-2027.
- 48. Egloff MP, Marguet F, Buono G, Verger R, Cambillau C, van Tilbeurgh H. The 2.46 A resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. *Biochemistry*. 1995; 34(9): 2751-2762.