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Chemerin-adiponectin axis in hypothyroidism
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Hypothyroidism disrupts energy and metabolism due to insufficient thyroid hormones production, 
leading to metabolic disorders such as insulin resistance and dyslipidemia. Recent studies have demonstrated 
the impact of adipokines, chemerin and adiponectin on thyroid function. This review analyzes the involve-
ment of these hormones in the metabolic and inflammatory complications of hypothyroidism, their effects and 
interactions through complex signaling pathways, as well as their possible contribution to the etiology and 
treatment of hypothyroidism, considering the importance of integrating biomarker data.
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H ypothyroidism, characterized by insuf-
ficient production of thyroid hormones 
(THs), disrupts energy balance and meta-

bolic homeostasis [1]. Thyroxine (T4) and triiodo-
thyronine (T3), two thyroid hormones, are impor-
tant modulators of metabolic rate that affect the 
metabolism of proteins, fats, and carbohydrates 
[2, 3]. Weight gain, insulin resistance, and dyslipi-
demia are just a few of the metabolic disorders that 
can result from thyroid hormone dysregulation [4]. 
Adipose tissue secretes several adipokines,  among 
them chemerin and adiponectin, which are impor-
tant for hormonal and metabolic control [5, 6]. While 
adiponectin has anti-inflammatory, anti-atherogenic, 
and insulin-sensitizing qualities [1, 5], chemerin is 
implicated in immunological responses, cell prolife
ration, and tissue remodeling [7]. There is more to 
hypothyroidism than a thyroid hormone imbalance. 
Two hormones that control inflammation and me-
tabolism are chemerin and adiponectin. The activi
ty of these hormones is significantly influenced by 
thyroid hormone levels. This connection contributes 
to the explanation of why untreated hypothyroidism 
results in serious health issues such metabolic disor
ders and cardiovascular disease. The impact of these 
hormones on thyroid function has been demon
strated by recent research. These findings offer 

valuable insights into the underlying mechanisms 
of hypothyroidism and highlight potential avenues 
for improved therapeutic interventions. The objec-
tive of this review explores how chemerin and adi-
ponectin contribute to the metabolic and inflam-
matory complications observed in hypothyroidism. 
We hypothesize that dysregulation of the chemerin-
adiponectin axis underpins metabolic complications 
in hypothyroidism. Pro-inflammatory chemerin 
(elevated in hypothyroidism) and dysregulated adi-
ponectin (variably reported) interact antagonistically 
via TNF-α, creating a self-amplifying cycle of meta-
bolic dysfunction (Figure). 

Methodology

To gather relevant papers on chemerin and adi-
ponectin in hypothyroidism, this review used a care-
fully planned approach. A thorough literature search 
(January 2010 - March 2025) was carried out using 
Google Scholar, PubMed, and Scopus, utilizing key-
words such as “Chemerin”, “Adiponectin”, and “Hy-
pothyroidism” combined with Boolean operators. 
The inclusion criteria ruled out research that were 
restricted to in vitro experiments or animal models 
and instead focused on studies that provided quan-
titative data on blood levels or gene expression in 
humans. Two stages of screening were used in the 
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selection process: first, titles and abstracts were re-
viewed for relevance, and then full-text publications 
were evaluated for methodological quality using the 
Newcastle-Ottawa Scale for observational studies. 
The final selection prioritized high-quality studies 
providing clinically relevant quantitative data on 
serum levels or gene expression in human hypothy-
roidism.

Biological functions of chemerin 
and adiponectin

Adipose tissue is the primary source of the 
adipokine chemerin. Chemerin modulates immune 
responses, adipogenesis, and energy metabolism 
via CMKLR1/NF-κB signaling [8, 9]. According to 
Yang et al., metabolic diseases such as obesity and 
insulin resistance frequently cause changes in its 
levels [9]. Chemerin signals via CMKLR1-dependent 
NF-κB and MAPK cascades [8]. White adipose tis-
sue is the primary source of adiponectin, the most 
prevalent adipokine in the bloodstream . In contrast 
to chemerin, adiponectin exerts anti-inflammatory 
effects via AMPK/PPAR-α pathways [5].

Adiponectin is essential for inflammation, lipid 
metabolism, and glucose homeostasis [1, 5]. Adi-
ponectin activates AdipoR1/R2-mediated AMPK 
phosphorylation, these receptors are expressed in 
a variety of organs, such as the liver, muscle, and 
hypothalamus and through which, adiponectin 
produces its effects [5]. These receptors’ activation 
generates off downstream signaling cascades that 
improve lipid profiles, lower inflammation, and in-
crease insulin sensitivity. Obesity and insulin re-
sistance are frequently inversely connected with 
circulating adiponectin levels [1, 5]. More research 
is necessary to fully understand the intricate regu-
latory processes controlling the production of adi-
ponectin and how it interacts with other hormones 
and signaling pathways [10].

Overview of chemerin

Chemerin is a adipokine that has become a 
molecule of great interest because of its involve-
ment in a variety of physiological processes, such 
as inflammation, adipogenesis, and energy metabo-
lism [11]. Although its role in a number of metabolic 
disorders, such as obesity and type 2 diabetes, is 
fairly well-established [12], its potential involvement 
in thyroid dysfunction, particularly hypothyroidism, 
is still being investigated and debated. Chemerin is 
primarily produced in the liver and adipose tissue as 

an inactive precursor, prochemerin [13]. Procheme
rin undergoes proteolytic cleavage by various serine 
proteases, producing several active isoforms that 
may have opposing biological functions [13, 14].

The inactive form of chemerin, chemerin-S163, 
is released into extracellular spaces or the circulato-
ry system after prochemerin is truncated at its N-ter-
minal by a 20-amino acid signal peptide. In the ex-
tracellular environment, chemerin is further cleaved 
at the C-terminus by enzymes like plasmin, elastase, 
and cathepsin G, resulting in chemerin-K158, -S157, 
and -F156, each of which has a different affinity for 
the receptor CMKLR1; further chymase cleaves 
the bioactive chemerin to produce chemerin-F154, 
which ceases its activity [15]. The primary active 
isoform, chemerin-156, binds to G protein-coupled 
receptors (GPCRs), including chemokine-like re-
ceptor 1 (CMKLR1), G protein-coupled receptor 1 
(GPR1), and C-C motif chemokine receptor-like 2 
(CCRL2) [16]. GPR1 can also bind chemerin, but 
it has a weaker signaling capacity and may func-
tion as a decoy receptor [17].CMKLR1 is primari
ly expressed on immune cells, including dendritic 
cells and macrophages, mediating chemotaxis and 
influencing inflammatory responses [18]. C-C motif 
chemokine receptor-like 2CCRL2, a non-signaling 
receptor, is expressed in barrier cells and may con-
trol leukocyte migration [18].

Role of chemerin in inflammation 

Chemerin is an important mediator of inflam-
mation that was first discovered in skin cultures 
treated with tazarotene. Depending on the circum-
stances, it can either promote or resolve inflamma-
tion. During inflammatory responses, polymorpho-
nuclear cells release elastase and cathepsin G, which 
transform chemerin into active forms (chemerin-157 
and chemerin-156) that start a variety of inflam-
matory processes, including vascular endothelial 
dysfunction, angiogenesis, the recruitment of an-
tigen-presenting cells, and enhanced immune cell 
chemotaxis [19]. Chemerin’s signaling mechanisms 
include binding to ChemR23/CMKLR1, a G protein-
coupled receptor present in immune cells, which 
triggers the NF-kB pathway, which in turn releases 
inflammatory mediators and matrix-degrading en-
zymes [18]. Among the molecular processes that are 
triggered by this binding are interactions with the 
TLR4 receptor, which triggers the NF-kB pathway. 
When this pathway is activated, matrix-degrading 
enzymes [20], and inflammatory mediators are re-
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leased. Phosphorylated AKT and p65 levels rise in 
response to chemerin stimulation, while total AKT 
and p65 levels stay constant [20]. The following is 
the order in which the signaling cascade occurs: The 
TLR4 receptor is bound by chemerin, 2) CMKLR1 
phosphorylates AKT, 3) NF-kB pathway activation 
triggers inflammatory reactions, and 4) cytokines 
(IL-1β, IL-6, and TNF-α) are produced. Through 
proteolytic processing, chemerin can also have 
anti-inflammatory properties. Serine proteases can 
transform chemerin into chemerin-158 and cheme
rin-155. Additionally, mast cell chymase changes ac-
tive chemerin-157 into inactive chemerin-154, thus 
promoting anti-inflammatory responses [21].

According to Li et al., timing and enzymatic 
processing are necessary for this signaling duality 
[21]. Additionally, chemerin promotes dendritic cell 
migration to lymph nodes and promotes blood ves-
sel formation via pathways such as MAPK and Akt 
[21]. Proteases transform chemerin into anti-inflam-
matory peptides (chemerin-155 and chemerin-154) 
as inflammation subsides, which stimulate IL-10 
production and macrophage activation. As reported 
by Zhao et al., elevated chemerin concentrations are 
found in the synovial fluid of arthritis patients [22], 
and its chemotactic actions on macrophages and im-
mature dendritic cells have been highlighted by the 
discovery that CMKLR1 is a chemerin receptor on 
these immune cells [19].Chemerin can be activated 
by a number of inflammatory proteases, such as 
tryptase, elastase, and cathepsin G, which strength-
ens its pro-inflammatory function [23].

Furthermore, CCRL2 contributes to the ac-
tions of chemerin; when TNF-α, lipopolysaccharide 
(LPS), and interferon-gamma (IFN-γ) activate en-
dothelial cells, its expression rises, suggesting that it 
is involved in inflammatory responses associated to 
chemerin [24]. Elevated levels of plasma chemerin 
have been associated with rheumatoid arthritis dis-
ease activity, indicating that it may be a biomarker 
[25]. According to some research, chemerin levels 
and BMI are negatively correlated, which suggests 
that systemic inflammation associated with obesity – 
rather than an increase in adipose tissue – may be 
the cause of elevated chemerin levels [25]. Neverthe-
less, other studies revealed a relationship between 
chemerin and disease activity, which is consistent 
with previous findings, but no correlation between 
serum chemerin and BMI. Interestingly, chemerin 
levels and disease activity, as well as other inflam-
matory indicators including C-reactive protein 

(CRP) and IL-6, decreased following 16 weeks of 
adalimumab treatment (a TNF-α antibody) [26]. 

An important part of the pathophysiology of 
hypothyroidism is inflammation and metabolic syn-
drome, both of which are influenced by the multi-
functional adipokine chemerin. Chemerin, which is 
mostly produced by adipose tissue, affects a number 
of physiological functions, such as energy metabo-
lism and immunological responses. As a chemoat-
tractant, it alters the activity of immune cells that are 
vital to the body’s inflammatory response, including 
dendritic cells and macrophages [27, 28].  

  By direct these immune cells to areas of in-
flammation or damage, chemerin’s position enables 
it to make a substantial contribution to the body’s 
defense mechanisms [11]. Chemerin is essential for 
metabolic regulation in besides its function in in-
flammation. It has a major impact on how fats and 
carbohydrates are metabolized, and it frequently 
correlates with elements of the metabolic syndrome 
such visceral obesity, insulin resistance, and dyslipi-
demia. Individuals with obesity and associated meta
bolic disorders have been found to have elevated 
levels of chemerin, indicating that it may play a role 
in the genesis of these illnesses [11, 29]. Numerous 
inflammatory disorders have been shown to contain 
immunoreactive chemerin, according to clinical 
research. For instance, fibroblasts, mast cells, and 
endothelial cells have increased chemerin levels in 
the early phases of inflammation-related clinical al-
terations. The rate of synthesis of some homologous 
peptides from chemerin determines its dual function 
as a pro-inflammatory and anti-inflammatory media-
tor [21]. This adipokine is strongly associated with 
the metabolic dysfunctions that are characteristic of 
hypothyroidism because it may influence adipocyte 
differentiation and alter metabolic pathways. Under-
standing chemerin’s function in these interconnected 
networks offers important insights into possible 
treatment targets for controlling metabolic irregu-
larities, as hypothyroidism frequently manifests as 
metabolic syndrome symptoms. 

Chemerin in hypothyroidism

Chemerin’s role in hypothyroidism is emerging 
as a critical link to metabolic dysfunction. Studies 
have shown that people with thyroid dysfunction 
exhibit different patterns in their blood levels of 
chemerin, with hypothyroidism patients showing 
higher amounts of chemerin [30]. Elevated chemer-
in in hypothyroidism correlates strongly with TSH 
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and metabolic markers. There are multiple important 
links between chemerin and thyroid function: 1) an 
inverse relationship with HDL cholesterol [30]; 2) a 
positive correlation with TSH levels [30]; 3) a direct 
correlation with BMI and triglycerides [31] and 4) a 
negative correlation with T3 and T4 levels [30]. Ac-
cording to studies, obese people in the upper TSH 
tertile had higher levels of chemerin than people 
in the lower tertile [31]. This rise is linked to lower 
thyroid hormone levels, which impair the lipopro-
tein lipase enzyme’s activity and raise triglyceride 
levels [30]. These correlations are further supported 
by studies on animals, which shows that rats given 
methimazole had far higher levels of chemerin than 
they did at baseline [31]. Since chemerin also im-
pacts insulin sensitivity and glucose metabolism in 
hypothyroidism, these effects go beyond straightfor-
ward hormonal interactions. In 2019, Al Doghaither 
et al. this suggests that thyroid hormones, chemerin, 
and the regulation of metabolism have a compli-
cated interaction that could contribute to the over-
all pathophysiology of hypothyroidism [32]. When 
L-thyroxine was administered to subclinical hypo-
thyroid rats, Gong et al. found that the rats’ elevated 
chemerin levels were reversed [33]. Chemerin may 
be responding to the inflammatory state brought on 
by hypothyroidism, according to this. Ozdemir et al., 
on the other hand, have found no apparent difference 
in chemerin concentrations between hypothyroid 
and euthyroid people [4]. Differences in study popu-
lations, methods, or the degree and course of hypo-
thyroidism could be the cause of these disparities. 
Given the contradictory findings in the literature, 
more research is also necessary to determine how 
levothyroxine replacement affects chemerin concen-
trations [33, 34]. Furthermore, little is known about 
the clinical relevance of changed chemerin levels in 
hypothyroidism. Although chemerin has been con-
nected to metabolic diseases [11], more research is 
necessary to determine its precise function in the 
etiology of hypothyroidism and its related conse-
quences. Reduced thyroid hormone levels in indi-
viduals with hypothyroidism can cause metabolic 
abnormalities and impaired energy homeostasis, 
which may be impacted by variations in chemerin 
levels [35]. Thyroid tissue exhibits unique chemerin 
expression patterns, as revealed by RNA sequenc-
ing data analysis. Normal thyroid samples have high 
amounts of both chemerin and chemerin-1, while 
thyroid cancer samples have much lower levels of 
these proteins [36]. Chemerin is found in human bio-

logical fluids in a number of active forms, such as 
chemerin-156, chemerin-157, and chemerin-158. In 
thyroid tissue, chemerin-2 and CCRL2 expression is 
lower, with only minor differences observed between 
normal and cancerous samples [36]. This difference 
is particularly significant because thyroid cancer 
makes up approximately 1% of all tumors, with papi
llary carcinoma accounting for 80% of those cases 
[37]. Additionally, chemerin expression is correlated 
with thyroid-stimulating hormone (TSH) levels, as 
studies show that patients with thyroid cancer have 
higher levels of both chemerin and TSH than con-
trol groups [37]. This correlation has been used to 
distinguish between benign thyroid lesions and thy-
roid cancer, highlighting chemerin’s potential diag-
nostic utility. While chemerin appears elevated and 
pro-inflammatory in hypothyroidism, the role of the 
protective adipokine adiponectin is more complex, 
as explored below.

Overview of adiponectin

Within the adipokine family, adiponectin is a 
unique hormone that promotes insulin sensitivity 
and metabolic health [38]. This substance affects the 
liver, skeletal muscle, and pancreas, among other 
organs, and coordinates a number of vital energy 
metabolism processes [39]. There are two receptor-
mediated mechanisms by which adiponectin affects 
metabolism. According to Yamauchi and Kadowaki, 
it increases peroxisome proliferator-activated recep-
tor alpha signaling through AdipoR2 and activates 
AMP kinase via AdipoR1 [40]. Through AMPK 
activation, adiponectin improves insulin-stimulated 
glucose transport as well as basal glucose absorp-
tion in skeletal muscle [38]. In the liver, it enhances 
glucose transport while lowering gluconeogenesis, 
hence raising metabolic efficiency. Clinical research 
suggests that adiponectin is essential for preserving 
energy balance in addition to controlling glucose 
[38]. The main biological roles of adiponectin are 
closely related to its capacity to improve insulin 
sensitivity and have anti-inflammatory [41], and 
anti-atherogenic [42] properties. Adiponectin’s anti-
inflammatory properties are essential for its defense 
against cardiovascular and metabolic disorders. A 
crucial stage in the development of atherosclerosis, 
it decreases the adherence of monocytes to vascular 
endothelial cells by inhibiting the production of en-
dothelial adhesion molecules [43, 44]. Additionally, 
adiponectin reduces inflammation in adipose regions 
via modifying macrophage activity by lowering their 
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polarization toward an anti-inflammatory phenotype 
[45, 46]. Adiponectin slows the evolution of meta-
bolic problems and cardiovascular diseases through 
these methods. Furthermore, adiponectin influences 
a wide range of physiological processes beyond glu-
cose and lipid metabolism, including cell prolifera-
tion and angiogenesis, via interacting with several 
cell signaling pathways and interacting with other 
hormonal systems. Despite its positive effects, obe-
sity, type 2 diabetes, and coronary artery disease are 
associated with lower levels of adiponectin, creating 
a paradox whereby adiposity causes a decline in this 
important adipokine [47].

Structure and production

Adiponectin is a 244-amino acid protein with 
unique structural domains that make up its mo-
lecular structure. This hormone has 15 collagenous 
repeats, a hyper variable domain, an N-terminal 
sequence, and a C-terminal region that resembles 
complement factor C1q [39]. Low molecular weight 
(LMW) trimers, medium molecular weight (MMW) 
hexamers, and high molecular weight (HMW) mul-
timers greater than 400 kD are the three main types 
of adiponectin that are present in serum [48]. The 
form with the highest molecular weight is thought 
to be the most physiologically active of these [49].   
The most prevalent peptide hormone made from fat 
tissue is adiponectin, which is produced and released 
by white adipocytes [39]. The process of production 
requires intricate post-translational changes that 
need for certain chaperone proteins, including ER 
oxidoreductase 1-LA and endoplasmic reticulum 
resident protein 44 [39].

Role of adiponectin in metabolic 
regulation and disease 

An important adipokine released by adipose 
tissue, adiponectin influences the pathophysiology of 
several metabolic disorders and is involved in meta-
bolic control. Its major purpose is to increase insulin 
sensitivity, which is essential for preserving glucose 
homeostasis [47]. This adipokine inhibits hepatic 
gluconeogenesis while simultaneously boosting glu-
cose absorption and fatty acid oxidation in skeletal 
muscles through its effects on many metabolic path-
ways [50]. Adiponectin is a crucial regulator in the 
prevention and management of insulin resistance 
and type 2 diabetes because of these combined ef-
fects on blood glucose levels and lipid profiles [51].  
Adiponectin has anti-inflammatory qualities in ad-

dition to its insulin-sensitizing actions [45], which 
emphasizes its preventive function against metabolic 
disorders [52]. Chronic low-grade inflammation, 
a frequent characteristic of obesity and associated 
illnesses, is reduced by adiponectin's inhibition of 
pro-inflammatory cytotoxins. Because low levels 
of adiponectin can cause endothelial dysfunction 
and atherosclerosis, they are frequently linked to 
increased risk factors for cardiovascular illnesses 
[43, 47]. On the other hand, adiponectin may have 
a function in protecting the arteries because it is as-
sociated with a reduced likelihood of cardiovascular 
problems [53]. Adiponectin is a key mediator in the 
delicate balance of metabolic processes overall, and 
its dysregulation is closely associated with the onset 
and progression of metabolic disorders as show in 
Figure, suggesting that it may be a promising thera-
peutic target for the treatment of these conditions 
[54]. The promise of adiponectin as a treatment re-
quires more research.

Adiponectin in hypothyroidism

Adiponectin levels in individuals with hypo-
thyroidism demonstrate diverse patterns, as seen 
in clinical research. Median values for adiponectin 
in hypothyroid patients are reported to be around 
12.5 µg/ml, which is significantly higher than the 
levels observed in euthyroid patients, typically 
around 6.26 µg/ml [55]. Several factors link thyroid 
function to adiponectin levels. Notably, there is a 
positive correlation between adiponectin and high-
density lipoprotein (HDL) cholesterol, while a nega-
tive correlation exists with body mass index (BMI) 
and plasma triglycerides [56]. Additionally, strong 
correlations have been noted between adiponectin 
and indicators of insulin resistance [57], as well as 
distinct behaviors related to thyroid-stimulating hor-
mone [55]. Importantly, when hypothyroid individu-
als achieve euthyroidism, a dramatic decrease in adi-
ponectin levels occurs, with statistical significance 
(P = 0.047). This decrease in adiponectin is particu-
larly relevant to glucose metabolism during thyroid 
dysfunction [57]. According to research, adiponectin 
resistance can arise in hypothyroid conditions as a 
compensatory mechanism, which explains why thy-
roid insufficiency is associated with higher adiponec-
tin levels ,as show in the Table [55]. This resistance 
emphasizes the intricate connection between thyroid 
function and adipose tissue control, especially with 
regard to lipid metabolism and glucose balance. 
These discoveries advance our knowledge of the 
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T a b l e. Clinical studies on chemerin/adiponectin in thyroid dysfunction

Population Key Findings Limitations References
Hypothyroid patients ↑ Chemerin correlates with ↑ TSH, 

↓ T3/T4, ↑ triglycerides, ↓ HDL.
Small sample size; no 
follow-up post-therapy

[30]

Obese hypothyroid Adiponectin ↑ in hypothyroidism; 
↓ after levothyroxine (P = 0.047).

Did not measure HMW 
adiponectin isoforms

[55]

Euthyroid vs. hypo No chemerin difference; 
*adiponectin ↑ in hypothyroidism 
linked to insulin resistance

Confounding by 
BMI variability

[4]

Subclinical hypo rats Levothyroxine ↓ chemerin; 
reverses metabolic inflammation

Animal model; human 
relevance unclear

[33]

Hypothyroid + 
neuropathy

↓ Adiponectin in neuropathy 
subgroup; suggests 
neuroprotective role

Cross-sectional; 
causality not established

[58]

Note. ↑ – Increase; ↓ – decrease; HDL – high density lipoprotein; T4 – thyroxine; T3 – triiodothyronine; BMI – body 
mass index
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larger pathophysiology of hypothyroidism.  Nonethe-
less, a number of studies have consistently found that 
hypothyroid individuals had lower serum adiponec-
tin levels than euthyroid controls. Rashad et al., for 
example, observed that hypothyroid individuals, 
particularly those with peripheral neuropathy, had 
noticeably reduced levels of adiponectin [58]. This 
difference highlights the complex mechanisms be-
hind thyroid dysfunction and its effects on metabo-
lism. According to some research, thyroid hormones 
may have a direct impact on the expression and se-
cretion of the adiponectin gene [33, 59]. However, 
other research suggests that a secondary effect of 
variables including insulin resistance and obesity 
[55]. Additionally, there are contradictory findings 
about how levothyroxine replacement treatment af-
fects adiponectin levels. According to some research, 
adiponectin levels rise after therapy [33], but other 
studies reveal no discernible change or even a drop 
[4, 60]. Differences in patient groups, methods of 
therapy, and research designs might be the cause of 
these discrepancies. The exact mechanics and thera-
peutic implications of these discoveries require more 
investigation. Further research is also necessary to 
determine the function of adiponectin as a biomarker 
for hypothyroidism, since other variables like body 
mass index  may restrict its diagnostic potential [61].

Interaction between chemerin and 
adiponectin in thyroid dysfunction 

The interaction between chemerin and adi-
ponectin in thyroid dysfunction is characterized by 
a negative correlation [62], that exacerbates meta-
bolic complications in hypothyroidism, forming the 
core of our central hypothesis. influences metabolic 
dysregulation, mediated partly by TNF-α. In vitro 
studies confirm TNF-α increases chemerin mRNA 
expression and secretion while suppressing adi-
ponectin transcription in adipocytes [62], disrupting the 
balance between pro- and anti-inflammatory signals. 

Molecular pathways

Chemerin Signaling mediated by Binds CM-
KLR1 [63], which activating two pathways, MAPK 
pathway is rapid phosphorylation of ERK-1/2 and 
p38 (peak activation at 30 min) [64]. While NF-κB 
pathway is delayed p65 phosphorylation (peak at 
60 min) [64]. Inhibits insulin sensitivity via ERK-
dependent IRS-1 phosphorylation [64]. Adiponec-
tin Signaling Activates AMPK via AdipoR1 and 
PPAR-α via AdipoR2 respectively [65]. 

Thyroid-specific modulation

Thyroid hormones (T3) regulate gene ex-
pression via nuclear receptor complexes involving 
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coactivators/corepressors, impacting mRNA sta-
bility and translation [65]. Emerging evidence 
suggests that TSH directly modulates chemerin 
secretion via TSHR signaling in adipocytes, inde-
pendent of T3/T4 [36]. Elevated TSH in hypothy-
roidism activates cAMP-PKA signaling, increasing 
RARRES2 (chemerin) transcription in adipocytes 
[36] and exacerbating CMKLR1-mediated in-
flammation. Conversely, adiponectin resistance in 
hypothyroidism may arise from ER stress-induced 
ubiquitination of AdipoR1, impairing AMPK activa-
tion despite elevated circulating levels [55].

Clinical implications in hypothyroidism

The reciprocal imbalance as in Figure, 
(↑ chemerin, ↓ adiponectin) independently predicts 
metabolic syndrome risk, [62] exacerbating insulin 

resistance and dyslipidemia [66, 67], inflammation 
and oxidative stress [68, 69]. This imbalance under-
lies cardiovascular complications in thyroid disor-
ders [69], highlighting chemerin-adiponectin cross-
talk as a therapeutic target [70, 71].

Limitations and future directions

There is a crucial knowledge gap regarding 
metabolic-endocrine interactions since the molecular 
processes underlying the relationship between adi-
pokines and thyroid hormones are yet unknown. Tar-
geting thyroid-stimulating hormone (TSH) receptors 
has been the focus of recent advances in the treat-
ment of hypothyroidism, especially by researchers 
at Mount Sinai. This has opened up new possibili-
ties for novel therapeutic approaches. Pharmaceuti-
cal developments are also looking at tissue-specific 

Figure. Chemerin-adiponectin-thyroid axis in hypothyroidism. 1 – ↑ TSH → Chemerin release: TSH stimu-
lates chemerin secretion from adipocytes [36]. 2 – Chemerin → NF-κB → TNF-α/IL-6: CMKLR1 activation 
drives inflammation and insulin resistance [18, 64, 71]. 3. – Adiponectin ↓ → AMPK/PPAR-α ↓: TNF-α sup-
presses adiponectin, worsening dyslipidemia [62]. 4 – Feedback Loop: Inflammation amplifies chemerin and 
suppresses adiponectin, perpetuating metabolic syndrome [71]
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improvement of triiodothyronine (T3) signaling 
and slow-release liothyronine (LT3) formulations to 
overcome therapy limitations [72]. 

Priorities for future study include: 
• Noninvasive hormone monitoring devices to 

enhance personalized nature of treatment.
• Thyroid tissue engineering using advanced 

regenerative medicine techniques.
• precise diagnostics powered by artificial intel-

ligence to improve illness management and catego-
rization. 

• combining biomarker data with patient-
reported outcomes to connect clinical and life 
experiences. 

Notably, 10–20% of patients continue to expe-
rience persistent symptoms (e.g., fatigue, cognitive 
dysfunction) despite achieving normalized free thy-
roxine (T4) and TSH levels, underscoring the need 
for deeper mechanistic insights and patient-centered 
therapeutic approaches [72]. Investigations into ge-
netic factors are also underway to identify additional 
markers for more precise diagnoses and personalized 
treatment options, RARRES2 rs17173608 variants 
correlate with chemerin levels in autoimmune hypo-
thyroidism [73]. In thyroid diagnostics are expected 
through enhanced imaging technology and point-
of-care testing tools that provide quick and accurate 
results, particularly in resource-limited areas. AI ar-
tificial intelligence systems utilizing large datasets 
can identify subtle patterns in genetic, clinical, and 
imaging data that traditional analyses may overlook 
[73]. Additionally, research is ongoing into chemerin 
as a potential marker for body composition, with a 
focus on understanding its production by organs like 
the liver and lungs and its role in metabolic control 
and balance [64].

Conclusion. The chemerin-adiponectin axis 
imbalance is central to the metabolic pathophysiolo
gy of hypothyroidism, offering a promising target 
for novel therapies. Hypothyroidism’s metabolic and 
inflammatory consequences are intricately linked 
to adipokines chemerin and adiponectin, which 
modulate insulin sensitivity, lipid metabolism, and 
immune responses. While chemerin promotes in-
flammation and correlates with thyroid dysfunction, 
adiponectin’s anti-inflammatory role is paradoxically 
disrupted in hypothyroidism. Their interaction high-
lights a therapeutic target for mitigating metabolic 
syndrome in thyroid patients. Persistent symptoms 

despite normalized hormone levels demand innova-
tive approaches, including precision diagnostics, AI 
integration, and regenerative medicine. Addressing 
these gaps requires elucidating molecular mecha-
nisms and prioritizing patient-centered strategies. 
Advancing research on adipokine-thyroid crosstalk 
promises to transform hypothyroidism management, 
improving outcomes for those resistant to conven-
tional therapies.
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Гіпотиреоз спричиняє порушення енерге-
тичного обміну та метаболізму через недостатнє 
продукування гормонів щитоподібної залози, 
що призводить до таких патологічних станів, 
як інсулінорезистентність і дисліпідемія. 
Останні дослідження продемонстрували вплив 
адипокінів хемерину та адипонектину на 
функцію щитоподібної залози. У цьому огляді 
проаналізовано їхню роль у метаболічних та за-
пальних ускладненнях гіпотиреозу, розглянуто 
вплив та взаємодію через сигнальні шляхи, а 
також можливий внесок у патогенез та терапію 
гіпотиреозу з огляду на важливість інтеграції 
даних біомаркерів.

К л ю ч о в і  с л о в а: хемерин, адипонек-
тин, гіпотиреоз, гормональні взаємодії, дані 
біомаркерів.
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