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The state of mitochondrial homeostasis, comprising the processes of mitochondrial biogenesis, selec-
tive removal of damaged or dysfunctional mitochondria, mitochondrial dynamics (fusion and fission), as well
as signaling systems of mitochondrial metabolism regulation are analyzed in this review. Particular attention
is paid to how the bioenergetic demands of tissues are modulated in viral SARS-CoV, hepatitis B & C infec-

tions and asthma.
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itochondria are the primary bioener-
M getic organelles of cellular metabolism

and their function underlies much of the
metabolic activity throughout the organism. While
their roles in oxidative phosphorylation (OXPHOS),
the tricarboxylic acid (TCA) cycle, electron transport
chain (ETC), production of reactive oxygen species
(ROS) and oxidative or age-related damage are most
widely understood, they also hold diverse roles as
constituent components of the innate immune sys-
tem. This review first approaches the role of mito-
chondrial homeostasis as a central feature of the
physiologic mitochondrial compartment — the con-
tinuously fusing and fissioning mitochondrial com-
ponent of the cell — before explaining mechanisms of
mitochondrial biogenesis and autophagy. After de-
tailing the regulatory mechanisms that control this
process, these topics are explored in the context of
specific diseases including SARS-CoV-2 infection,
chronic viral hepatitis and asthmatic and obstructive
patterns of pulmonary change.

The physiologic mitochondrion

Mitochondrial homeostasis and the mitochon-
drial compartment. The physiological state of the
mitochondrial compartment of the cell is one of flux.

Mitochondrial morphology is heterogeneous and de-
pends on the phenotype and function of the tissue,
ranging from dense reticular networks in cells with
high OXPHOS requirements to more discrete, small,
separated organelles in tissues dependent on anaero-
bic glycolysis [1, 2]. It is a dynamic process whereby
mitochondria continuously undergo fusion and fis-
sion, configuration being controlled by cellular and
extracellular factors, and it is essential to the normal
function of the cell [3].

Fission protein 1 (Fisl) acting in conjunction
with dynamin related peptide 1 (Drpl) are the prima-
ry fission regulating peptides of the outer membrane.
While Fisl is an outer membrane protein, Drpl is
a cytosolic peptide recruited to the outer mitochon-
drial membrane [4-7]. Excessive Drpl activation
has been implicated in autosomal recessive juvenile
Parkinsonism, which results from failure of mito-
chondrial fission processes and impaired mitophagy
[8, 9]. Fusion is controlled mainly by GTPases mito-
fusin 1 and 2 (Mfn1, Mfn2) in the outer membrane
and optic atrophy protein 1 (Opal, also known as
Mgm1) in the inner membrane. Their dysfunction
has been implicated in diseases such as dominant
optic atrophy [10] and Charcot-Marie-Tooth 2A [11].
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Mitochondrial fusion and the prevention of
excessive sized organelles is controlled by “flicke-
ring”, a momentary series of depolarisations of
the mitochondrial membrane. Flickering activates
Omal, an inner membrane protease which deacti-
vates Opal. Flickering itself is regulated by super-
oxide dismutase 1 and cytochrome c oxidase, both
of which are copper dependent and rely on Cu?" and
phosphate transporter Slc25a3 [12]. Morphologically,
failure of fusion proteins results in fragmentation of
the mitochondrial compartment and disorder of the
cellular OXPHOS system [13-15]. Cells requiring a
highly energy-dense profile display a rich, closely
spaced reticular mitochondrial network that provides
a key highway for metabolite and waste transport
while allowing continued traffic of mitochondrial
proteins that are encoded by nuclear genomes [16].
Mitochondrial homeostasis is ultimately controlled
by two distinct and opposing processes — mitochon-
drial biogenesis (mitogenesis) and autophagy of de-
fective mitochondria (mitophagy).

Mitogenesis. Mitochondrial biogenesis is a
complex process requiring extensive crosstalk be-
tween nuclear and mitochondrial apparatus. The
mitochondrial genome consists of around 16.5 thou-
sand base pairs. 13 peptides are transcribed from
mitochondrial DNA (mtDNA) and produced within
the mitochondria: 7 of the 45 ETC complex | com-
ponents, 1 component of the 11 comprising ETC
complex 11, 3 of the 13 comprising ETC complex

IV and 2 of the 18 required for ETC complex V. A
further 22 tRNA and 2 mitochondrial ribosomal
RNA genes are also present, without which mito-
chondrial protein transcription and translation could
not take place [17]. The several thousand other
components required to produce functioning mito-
chondria are derived from nuclear-encoded proteins
which must be transcribed, translated, processed,
and transported into the mitochondria.

mtDNA is housed within protein nucleoids
consisting of high mobility group (HMG) proteins,
particularly mitochondrial transcription factor A
(TFAM). These proteins assist in structural stabili-
ty, replication and transcription and are essential to
mitochondrial biogenesis [18, 19]. This is conducted
by a mtDNA replication apparatus which, while
described in the literature, is nevertheless poorly
understood. mtDNA polymerase (Poly) is a nuclear
encoded protein composed of two subunits, encoded
by genes POLG (held at locus 15g25) and POLG2
(held at locus 17g24.1). The process of mtDNA tran-
scription is highly conserved in eukaryotes and is
upregulated when cellular OXPHOS demands are
increased. Pol vy acts with Twinkle (the mtDNA
helicase) and mitochondrial single stranded DNA
binding protein (mtSSB) to initiate MtDNA repli-
cation [20, 21]. Failure of Pol y results in a varie-
ty of monogenic hereditary and sporadic disorders
including microcerebrohepatopathy, Alpers-Hutten-
locher syndrome (a triad of neurodevelopmental re-
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gression, seizures and liver failure) and progressive
external ophthalmoplegia. Characteristic molecular
features of these diseases include multiple mtDNA
deletions, cytochrome c deficiency within muscle fi-
bres and gross depletion of mtDNA throughout the
body [22,23]. Germline failure of mtSSB is lethal in
utero while localised inactivation in myocardial tis-
sue results in cardiomyopathy in murine models [21].

Mitophagy. Mitophagy is the autophagic pro-
cess by which mitochondria are degraded and recy-
cled into their component parts. When mitochondria
malfunction, damage associated molecular patterns
(DAMPs) such as mtDNA and ROS are produced.
Recognised by a host of pattern recognition recep-
tors (PRRs), defective mitochondria are then selec-
tively sequestered for disposal via lysosomal degra-
dation [24].

Phosphatase and tensin homolog (PTEN) in-
duced kinase 1 (PINK1) — Parkin interaction con-
stitutes the classic mitophagy pathway. PINKL1 is a
serine/threonine kinase containing mitochondrial
targeting sequence, bearing mitochondrial mem-
brane side and a cytoplasmic facing kinase [25], and
it is activated by depolarisation of the mitochondrial
membrane [26, 27]. Parkin (so named for its aetio-
logic role in the pathogenesis of several variants of
autosomal recessive hereditary Parkinson disease
[8, 9]) is a cytosolic E3 ubiquitin ligase which locates
to the mitochondrial membrane when activated by
PINKZ1. Activated Parkin chain-ubiquitylates N-ter-
minally fused lysine residues on voltage dependent
anion channel 1 (VDACTI) [25, 26], along with Mfnl
and Mfn2 [25, 28, 29], resulting in the recruitment
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of autophagic adaptor protein p62 (also referred to
as sequestrome-1 or SQSTMLI). p62 is the link be-
tween the ubiquitylation pathway proteins PINK1-
Parkin and the autophagy related (ATG) proteins
subsequently responsible for vesicle interactions
and lysosomal envelopment of the organelle. p62
interacts with ATG8 homologues LC3 and B of the
phagophore vesicle complex [30], allowing the de-
fective organelle to be enveloped by the expanding
phagophore membrane. At this point, activation of
ATG9a allows fusion of the phagophore with the
lysosome via SNARE-SNARE protein interaction
[31], resulting in the introduction of proteolytic en-
zymes and organelle degradation within the auto-
lysosome [32], as described in Fig. 1.

Parkin independent mitophagy is less well ex-
plored and appears to function via proteins involved
in physiologic mitochondrial dynamics. Parkin
knockout cells with defective mitochondria pro-
duce mitophagy by PINKZ1 interaction with Drp1,
resulting in fracture of the outer mitochondrial mem-
brane and chain-ubiquitylation of the inner mem-
brane [33]. In Drpl and Opal knockout (“mitochon-
drial stasis”) hepatocytes, p62 recruits cullin-RING
scaffold protein associated ubiquitin ligases Keapl
and Rbx1, allowing an alternative PINKZ1-Parkin in-
dependent method of ubiquitylation [34]. An alterna-
tive method has been demonstrated in hypoxic cells.
BNip3 and Nix (members of the Bcl-2 pro-apoptotic
protein family [35]) prevent hypoxia inducible factor
la. (HIF-1a) stabilisation, resulting in the degrada-
tion of Mfnl, Mfn2 and translocase of outer mem-
brane protein 20 (TOM20). This prevents fusion,
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Fig. 1. The PINKI-Parkin Pathway (created in BioRender.com)
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continued use of damaged organelle segments and
failure of mitochondrial membrane integrity [36].
It remains to be seen whether Parkin independent
mitophagy pathways occur concurrently to classic
PINK1-Parkin autophagy or are truly independent
of it and only occur when components are defective.

Cation signalling in mitochondrial homeosta-
sis. Mitochondria are core components of cellular
signalling apparatus and the biophysical proper-
ties of their membrane ion channels provides a key
component of cellular homeostasis. A full review of
calcium signalling within oxidative phosphorylation
and mitochondrial homeostasis is beyond the scope
of this article, yet research developments have shown
that the cation signalling remains the ultimate means
of fine control of energy production. Owing to the
large free energy within cellular Ca?* ion gradients,
calcium concentration is a highly sensitive measure
of the available free energy of the cell and calcium
signalling allows for a precise and elegant means of
controlling ATP production. The dominant method
of calcium entry is via the mitochondrial calcium
uniporter, a low affinity transporter situated in prox-
imity to endoplasmic reticular networks allowing in-
flux of ions to the organelle [37]. Calcium overload
results in cessation of the electron transport chain,
generation of ROS, depolarisation of the inner mito-
chondrial membrane and activation of apoptosis [38].

Ca?* regulated mitochondrial carriers (CaMC)
are the primary means of transduction for Ca?* sig-
nalling transduction to mitochondria. These proteins
are subdivided by the length of their N-terminal
regulatory domain into long-CaMCs and short-
CaMCs, and they control the entry of solutes that
pass through the inner mitochondrial membrane in
response to extracellular and cytosolic calcium sig-
nalling [39]. Within the mitochondrial compartment,
calcium signalling controls every stage of oxidative
phosphorylation. The production of acetyl-CoA from
pyruvate is carried out by the pyruvate dehydroge-
nase complex. Calcium-dependent dephosphoryla-
tion of the complex by PDH phosphatase activates
pyruvate dehydrogenase, resulting in conversion
to acetyl-CoA. Within the TCA cycle, meanwhile,
isocitrate dehydrogenase and a-ketoglutarate dehy-
drogenase have calcium sensitive motifs which, on
binding, reduce the Km of the enzyme complex for
their substrates, increasing TCA flux under condi-
tions of high calcium balance [40]. Studies have also
found Complex III and V of the ETC are sensitive to
Ca has signalling [41]. In this way, cellular stress in
the form of increased calcium balance regulates the

entry of substrates to the TCA cycle, the through-
put of TCA cycle metabolites and the output of ATP
from the ETC.

A wide array of mitochondrial potassium
channels have been discovered in every corner of
eukaryotes, a number of which are tissue specific.
Their primary function is the control of organelle
membrane potential, and as such they are both
calcium and voltage dependent. In essence, the low
cellular energy levels result in reduced calcium effect
on potassium channels, depolarisation of the orga-
nelle and initiation of apoptosis [37].

Regulation of Dynamics & Metabolism

The PPAR-PGC-1 axis. Nuclear transcription
factors peroxisome proliferator-activated receptors
(PPARS) hold a central role in determining the meta-
bolic profile of cells and tissues. PPAR isoforms have
heterogenous expression throughout the organism,
their different localisation allowing fine control of
the metabolic needs of the tissue [42]. Activated
PPARy and PPAR( stimulate nuclear transcription
of OXPHOS proteins and ETC subunits, along with
stimulating mitochondrial transcription of mtDNA
encoded genes [43]. Nuclear stimulators of PPARy
include thyroid hormone T3 [44-46], prostaglan-
din J2 [42], long chain fatty acids [47] and thiazo-
lidinedione pharmaceuticals such as rosiglitazone
[48]. Within the nucleus PPARs exist as a heterodim-
er bound to retinoid X receptor which, on ligand ac-
tivation, binds PPAR-responsive regulatory elements
within the genome activating transcription [49]. With
regards to PPARY (and to a certain extent PPARa
[50]), this includes fatty acid binding protein 2, acyl-
CoA binding protein, lipoprotein lipase, fatty acid
translocase/transport protein (also known as cluster
of differentiation 36), acyl-CoA synthetase, glycerol
kinase, insulin receptor substates 1 and 2 and glu-
cose transporter 4. The net result of this is increased
mobilisation of fats and fatty acids, their import to
the cell, processing into usable metabolites and even-
tually, oxidative phosphorylation [42]. Acting via a
similar mechanism, PPARS acts in skeletal muscle to
upregulate cytochrome c, uncoupling proteins 2 and
3 (UCP2 and UCP3) [51] along with TCA cycle pro-
teins succinate dehydrogenase and citrate synthase,
resulting in a shift towards muscle fibres with higher
OXPHOS potential [52].

PPAR isoforms act with PPARy coactivator 1
(PGC-1) to provide upregulation of diverse mi-
tochondrial functions. In brown fat tissue, this is
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most prominently the upregulation of uncoupling
protein 1 (UCP1), essential for thermogenesis [53].
While PPARs act mainly to induce transcription of
proteins responsible for lipid metabolism, the TCA
cycle and OXPHOS components, PGC-1 is the pri-
mary nuclear stimulator of mitogenesis, ultimately
marshalling over 1100 nuclear genes via several
downstream transcription factors [54-56]. Well
studied targets of the PPARy-PGC1 axis include
nuclear respiratory factor 2, which activates TFAM
to upregulate mtDNA replication and transcription
[67], and UCP2 and paraoxonase-2, which allow en-
hanced action to mitigate the production of reactive
oxygen species produced within mitochondria [56].

The role of AMPK, Sirtuins and mTOR. The
major link element between lipid metabolism, TCA
proteins, mitogenesis and mitophagy are NAD-de-
pendent deacylase sirtuin proteins, themselves ac-
tivated by AMP-protein kinase (AMPK) and mam-
malian target of rapamycin (MTOR). These pathways
are highly conserved from single celled eukaryotes
to mammals and have a complex role in the integra-
tion of nutrient sensing, metabolic demands and cell
stress or damage, and their outcomes converge on
mitophagy, mitogenesis and cell proliferative pro-
Cesses.

AMPK is activated when the AMP/ATP ratio
increases within in the cell, indicating low balance
of ready-use energy. AMPK is a major stimulator of
mitochondrial morphological change, mitophagy and
mitogenesis and it is through this mechanism that
cells with low energy balance, increased ROS and
stress act to repair and replace defective components
of the mitochondrial compartment [58].

Sirtuins are responsible for deacylation of his-
tone proteins and are heavily linked to ageing pro-
cesses. Of the seven sirtuin homologues known in
mammalian cells, Sirt2 has been best studied for its
role in longevity and is primarily localised within
the nucleolus where it promotes genome stability in
mitotically active cells [59, 60]. Genome sequencing
of Sirt3, 4 and 5 appear to show mitochondrial tar-
geting signals and confocal laser scanning micros-
copy of proteins tagged with MitoTracker red show
localisation within the mitochondrial compartment
[61, 62]. Sirt3 translocates to the mitochondrial com-
partment from the nucleus at times of cellular stress,
such as when DNA damage occurs [63]. Deacyla-
tion targets of Sirtl, Sirt3 and Sirt5 include PGC-
lo in the nucleus [64] and BNip3 [65], Opal[66]
and Parkin [67] in the mitochondria, while AMPK

also activates PINK1 and Fisl [68]. PINK1 and the
PINK1-Parkin pathway appear to play an important
role in mediating mitochondrial flux — overexpres-
sion of PINK1 results in increased Drpl activation
and fragmentation of mitochondrial compartment
while underexpression of PINK1 results in exces-
sive fusion [69].

Mammalian target of rapamycin (nTOR) is a
serine/threonine kinase complex which in its active
state stimulates ribosome biogenesis, protein syn-
thesis and metabolism via the IRS-PI3K pathway,
while inhibiting mitophagy. It is a major regulator of
cellular growth and anabolism and, via interaction
with a number of signalling pathways, responds to
insulin stimulation and cellular energy levels [70].
mTOR signalling has been well documented owing
to interaction with apoptotic apparatus via the PI3K/
Akt/mTOR signalling cascade [71]. With regards to
mitophagy, mTOR acta via the phosphorylation of
tuberous sclerosis complex 2 (TSC2), maintained
within endoplasmic reticular linkages to mitochon-
dria, to negatively interact with FK506 binding pro-
tein 8 (FKBP8), which when active initiates LC3
vesicle-dependent autophagy [72]. In nutrient star-
vation, AMPK inactivates mTOR, allowing unop-
posed FKBP8 action, upregulating mitophagy [73].
Previously assumed to be separate processes, signif-
icant crosstalk exists between the PI3k/Akt/mTOR
cascade and the unfolded protein response (UPR),
which mediates metabolic and apoptotic response
to endoplasmic reticular stress. Collectively, mTOR
and the UPR provide the integration pathways to
balance organismal metabolic requirements with
nutrient availability. Unfavourable growth condi-
tions or hypoxia produce UPR activation and mTOR
inactivation, upregulating mitophagy, reducing the
OXPHOS requirements of the cell, and balancing
the metabolic requirements of the tissue with the
nutrients available [74].

Direct action via mitochondrial receptors.
Direct regulatory action on mitochondria is estab-
lished in the literature, although poorly understood,
and there remains much scope for future research. In
macrophages, glucocorticoid action causes increased
polarisation of the mitochondrial membrane, import
of TCA cycle metabolites and upregulation of mito-
chondrial biogenesis [75]. Steroid and thyroid hor-
mone receptors are found within the mitochondrial
matrix, all nuclear encoded yet allowing for direct
endocrine action within the mitochondria. Two
major mitochondrial isoforms of the glucocorticoid
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receptor (GR), GRa and GRJ have been detected,
two isoforms of the oestrogen receptor (ER), ERa
and ERp along with two isoforms of the thyroid re-
ceptor c-erbAa and c-erbAp (Fig. 2) [76, 77].

New studies indicate that on ligand binding,
cytoplasmic glucocorticoid receptors interact with
pyruvate dehydrogenase complex proteins and trans-
locate to within the mitochondrial compartment of
the cell, where they upregulate TCA cycle activity
[75]. It was noted in 1977 that isolated rat mitochon-
dria respond to thyroid hormone T3 stimulation with
increased OXPHOS activity [78] and the presence
of matrix receptors for these hormones explains this
finding. In addition to acting on nuclear transcription
factors, T3 and steroid hormone administration re-
sults in increased mitochondrial genome expression
by acting on c-erbA receptors to activate TFAM,
increasing transcription of mitochondrial protein
subunits [44].

Mitochondria — a component of
the innate immune system

Inflammatory cytokine production. Dynamic
morphological change of the mitochondrial com-
partment plays a key role in regulating inflammatory
processes. Failure of the mitochondrial fusion-fission
cycle results in depolarisation of the mitochondrial
membrane, organelle swelling and the formation of
“megamitochondria” [79-82]. ROS induced damage
and mtDNA are recognised as DAMPs, and their
resultant leak into the cytoplasm and extracellular
environment causes activation of inflammatory pro-
cesses. The most important PRRs in mitochondrial
contexts are Toll-like receptors (TLRs), particularly
TLR9. TLR9 is responsive to mtDNA and expressed
both intracellularly in membranous vesicles and ex-
tracellularly on macrophages [83]. Of further note
are retinoic acid inducible gene I (RIG-I), which
binds non-cell double stranded DNA (dsDNA) [84],
and melanoma differentiation associated protein 5
(MDADS), sensing non-cell RNA [85].

Secretion of pro-inflammatory IL-1p3 and IL-18
by macrophages is dependent on activation of the
“inflammasome”, a cytoplasmic protein-complex
responsible for cleavage and activation of caspase-1.
“Canonical” inflammasomes consist of pro-caspase
1, an aspartate specific cysteine protease (ASC)
adaptor protein and a PRR — in this context, nucleo-
tide-binding oligomerisation domain-like receptors
(NOD-like receptors or NLRs) [86]. When the NLR
is activated, pro-caspase 1 is converted to its active

10

form, allowing enzymatic cleavage of pro-IL-1p and
other cytokine progenitors to their active form [87].
“Non-canonical” inflammasomes do not depend on
NLRs and result in gasdermin D cleavage by cas-
pase-11, allowing IL-1B secretion and pyroptosis
[88, 89].

Mitochondrial antiviral signalling protein
(MAVS) plays a key role as an intermediate between
nuclear transcription factors NFkB and interferon
regulatory factors and the production of interferons
during infection of the cell [84, 85]. In the resting
state MAVS is bound to Mfn2 on the mitochondrial
outer membrane. When the RIG-1 and MDAS5 com-
plex responds to non-cell genetic material, they ac-
tivate MAVS, which binds to TANK-binding kinase
1 (TBK1) and inhibitor of NFxB kinase € (IKKe),
translocating to the nucleus and activating IRFs to
upregulate transcription of interferons. The cyclic
GMP-AMP synthase — stimulator of interferon genes
(CGAS-STING) pathway is a similar mechanism that
responds to the presence of dsSDNA converging di-
rectly on TBK1 and IKKe [90, 91]. TLR9 activation
by mtDNA acts via adaptor protein MyD88 and a
series of IKK adaptors to converge on NF«xB, which
when translocated to the nucleus upregulates tran-
scription of pro-inflammatory cytokines TNFa, IL-1
and IL-6 [84].

While mitochondrial ROS have long been
recognised as a potential trigger of NLRP inflam-
masomes, a constitutive level of ROS is also an
essential component of the function of the innate
immune system [83]. Transcription of MAVS is
negatively regulated by ROS levels, and constitutive
production of ROS by NADPH oxidase enzymes ap-
pears to be required for RIG-I1 mediated activation of
IRF3 and production of proinflammatory cytokines
[92].

SARS-CoV-2 infection and post-acute seque-
lae. The role of canonical and non-canonical in-
flammasome activation under viral infection is now
well understood, and its core role in SARS-Cov-2
inflammation provides greater understanding of the
pathogenesis of COVID-19 while also suggesting
novel treatment options. SARS-CoV-2 open reading
frames (ORFs) are translated from positive-strand
RNA and interfere with autophagic processes, dis-
rupting Parkin ubiquitylation and autophagolyso-
some fusion. This resultant metabolic derangement,
along with suppression of the interferon production
RIG-I/MAVS and cGAS-STING pathways, causes
failure of innate immune antiviral processes [93-95].
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Fig. 2. Control of mitophagy, mitogenesis and metabolism Via AMPK and endocrine action on nuclear, reticu-
lar and mitochondrial structures (created in BioRender.com)

Of deeper interest are complex interactions between
viral entities and mitochondrial structural and
transport proteins. RNA-GPS studies early in the
COVID-19 pandemic predicted interactions between
viral polypeptides and subunits of ETC complexes I,
I and IV [96, 97]. Fluorescence microscopy located
SARS-CoV-2 genetic material within the mitochon-
drial matrix while indicating a consequent failure of
mitophagy [98]. Viral accessory protein ORF3c has
been demonstrated to utilise TOMZ20 to locate itself
within the mitochondrial compartment of the cell
where it too disrupts mitochondrial flux [94]. Patho-
logical studies have also found that viral genetic ma-
terial and polypeptide components of SARS-CoV-2
infection persist within post-mortem specimens
[99, 100], at times for years [101]. The implication is
that elements of the SARS-CoV-2 virus can seques-
ter themselves within the mitochondrial component
of the organism to evade immune surveillance and
response. The inflammatory response to viral inva-
sion, accumulation of defective components of the
mitochondrial compartment and failure of tissue
OXPHOS systems forms a putative theory for the

pathogenesis of post-acute sequelae in SARS-CoV-2
infection [96].

One of the more common manifestations of
post-acute COVID-19 sequelae is encephalomyeli-
tis/chronic fatigue syndrome-like symptoms of di-
minished muscle strength, pain, muscle cramping
and fasciculations or muscle spasm correlated with
limited exercise capacity and metabolic aberra-
tion in skeletal muscle tissue [102, 103]. Hypoxae-
mia, inflammatory responsive dysfunction in ETC
complexes and direct and inflammatory action on
microvasculature have been implicated [104], yet a
number of studies indicate that dysregulation of ion
transport and resultant sodium and calcium overload
causes disturbance of microvascular structures and
mitochondrial toxicity [105, 106]. Here, exercise-in-
duced hypoperfusion induces anaerobic metabolism
and increased proton production, which results in
increased in sodium exchange via the sodium-pro-
ton exchanger, inhibition of Complex V and a rise
in mitochondrial ROS production. This ultimately
causes the sodium calcium exchanger to reverse
flux, importing calcium to the skeletal muscle mi-

1
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tochondrial compartment, causing calcium overload
and resultant morphological defects throughout the
tissue [107].

Disruption of mitochondrial innate immunity in
hepatitis B & C infection. Hepatitis B (HBV) is an
encapsulated DNA virus, while hepatitis C (HCV)
is an RNA virus, yet both result in persistent and
progressive liver damage, the outcome of which is
hepatic fibrosis, cirrhosis and death. HBV and HCV
gain access to the liver via an organ-specific multi-
receptor complex, after which the viral particles are
unencapsulated, the nucleocapsid is released into
the cytoplasm and the viral DNA (HBV) or posi-
tive sense viral RNA (HCV) can act as material for
translation of viral peptides [108].

HBYV enhances its replicative ability by hijack-
ing mitophagic processes, initially by stimulating
excessive organelle fission by promoting Drpl, and
ultimately by the upregulation of the PINKZ1-Parkin
axis and degradation of Mfn2. The outcome of this
process is persistence of the infected cell beyond
usual viability, reducing ROS production and main-
taining limited OXPHOS activity while using gly-
colysis metabolites to provide useful substrates for
virion production [109,110]. In HCV, viral RNA is
recognised by RIG-1 and MDA5 PRRs, which trig-
ger MAVS assisted IRF and NF«B based interferon
response [111]. Viral non-structural (NS) proteins
NS3 and NS4 are serine proteases that render MAVS
ineffective by cleaving it from Mfn2, thus preventing
RIG-I/MDAZ5 signalling [112], while also interfering
with essential cofactors of TLR signalling [113].
Spread of the virus between hepatocytes results in
a state of persistent inflammation in newly infected
areas as pro-inflammatory pathways are activated,
while chronically infected areas have interferon pro-
duction suppressed by PRR interference [114].

HCYV infection appears to increase mitophagy
via an indirect route by suppression of mTOR, which
when active suppresses mitophagy [115] or unfolded
protein response [116] pathways, although whether
this occurs in HCV infection to the same extent as in
HBYV is controversial within the literature [117,118].
The reverse is true in alcoholic hepatitis (AH), where
hepatocytes from AH patients display reduced Drpl
and inactive mitochondrial fission. Electron micro-
graph studies show the accumulation of megamito-
chondria, while metabolomic studies show increased
ROS, cell stress, cytosolic mtDNA and activation of
CGAS-STING interferon signalling [119].

Aberrant hepatocyte calcium homeostasis pro-
vides another facet of chronic viral hepatitis. Both
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HBV and HCV directly increase calcium uptake
in hepatocyte mitochondria. HBV infection causes
hepatocytes to upregulate mitochondrial Ca?* uptake
1 channels and potentially VDACS3, although further
work is required to elucidate the implications of viral
interference with this structure [120]. HBV is also
known to integrate its genetic material into the gene
encoding Sarco/Endoplasmic Reticulum Calcium
ATPase, the primary ER calcium pump [121]. One
effect of cholestasis (the accumulation of bile acids
within hepatic tissues) resulting from advanced vi-
ral hepatitis is impairment of intracellular calcium
homeostasis within circulating T cells owing to the
failure of mitochondrial calcium uptake, reduces
the effective population of lymphocytes available to
combat the infection [122]. HCV meanwhile, directly
interacts with the mitochondrial calcium uniporter to
cause calcium overload of the hepatic mitochondrial
compartment, with resultant failure of ATP genera-
tion and apoptosis [120]. These advances have led
to a number of trials targeting aberrant Ca?* signal-
ling in viral hepatitis, which may prove decisive in
inhibiting HBV replication [123].

Nascent connections between mitophagy, asth-
ma and COPD. Asthma as a disease is characterised
by chronic airway inflammation, respiratory symp-
toms such as coughing and wheezing, varying in
intensity over time [124]. Inappropriate mitophagy
plays a role in the development of asthma in response
to particulate matter. Tandem mass spectrometry in
rat models shows market upregulation of VDACI in
lung tissue from asthmatic rats compared to controls
[125]. Downstream, mitochondrial dysfunction re-
sults in altered calcium metabolism and concomitant
increased smooth muscle contractility, causing the
airway remodelling that is the morphological hall-
mark of this disease [126].

Genetic studies indicate that single nucleotide
polymorphisms of ATG5 and SQSTM1 genes highly
predispose to the development of asthma, while elec-
tron micrographs of bronchial biopsy material show
increased autophagosome activity in patients with
reduced lung function [127]. The mTOR pathway
appears to play a role in the development of asth-
ma, as evidenced by murine models where mTOR
blockade through rapamycin alleviates symptoms of
inflammation. Asthmatic mice produced by allergic
sensitisation using cigarette smoke extract showed
significantly decreased neutrophil count and markers
of inflammation when treated with intraperito-
neal infusions of rapamycin [128]. A similar study
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showed increased LC3 autophagosome formation
in sensitised mice, with autophagy-related double-
membrane vesicles more prominent in eosinophils
from sensitised mice than in controls [129].

Histopathological examination of human
large airway epithelial tissue demonstrates in-
creased expression of ATG5 protein in severe
cases of asthma with airway remodelling, the
changes in correspondence to the severity of the re-
modelling process [130]. As the disease progresses,
transforming growth factor  (TGF-B) signalling
produces fibrosis while ultimately downregulating
PINK1-Parkin autophagic processes, mitophagy
and mitogenesis [131]. Immunohistochemical studies
in asthmatic mice has demonstrated upregulated
TFAM, NRF-1 and PGC-1a in bronchial smooth
muscle undergoing remodelling, which indicates at-
tempted mitochondrial biogenesis in the face of in-
creased metabolic demand [132].

Similar effects have been demonstrated in
COPD, and rapamycin and mTOR blockade remain
targets of interest in development of pharmaceuti-
cal treatments for pulmonary inflammatory disease
[133]. The role of the PINK1-Parkin mitophagy path-
way in pathogenesis was demonstrated by showing
that PINK1 deficiency was protective against cell
death and necroptosis in response to cigarette smoke
in mouse models [133]. A similar study demonstrated
the LC3 deficient mice had reduced airspace enlarge-

ment in response to cigarette smoke extract than
control animals [134]. Another avenue of interest in
COPD research involves altered lipid profile asso-
ciated with pro-inflammatory states. Metabolomic
studies of broncho-alveolar lavage fluid shows in-
creased expression of pro-inflammatory cytokines
IL-6 and IL-8 along with altered lipid surfactant
profile [135]. Acyl-carnitines expression is also al-
tered in COPD, which may provide another method
of investigating mitochondrial disturbance owing to
alterations in lipid metabolism and p-oxidation of
long-chain fatty acids. Further high-quality multi-
omic studies could do much to determine the meta-
bolic underpinnings of airway remodelling and pa-
renchymal change in COPD [136].

Conclusion.The mitochondrial compartment
now finds a central role in our understanding of in-
nate immunity. The metabolic and immune function
of the mitochondrial compartment are complemen-
tary and essential to the other’s proper function. The
mitochondrial compartment itself exists within a
dynamic and highly regulated continuum of biogen-
esis, autophagy and fusion-fission events, throughout
which the bioenergetic and immune components of
the cell can remain in balance with the demands of
the organism. Morphological change in tissue is ac-
companied by change in the metabolic phenotype
of component cells, underpinned by changes in the
configuration of cellular mitochondria. The central
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role of calcium signalling in mitochondrial function
and the downstream effects of dysfunctional calcium
homeostasis when the mitochondrial compartment
fails provides a fascinating avenue for the develop-
ment therapeutic interventions for a diverse array of
diseases.

Via a complex, cascading network of extra- and
intracellular signals the OXPHOS metabolic compo-
nent of the cell is modulated in response to stress,
starvation, pathogenic invasion, and other modalities
of disease. Certain invaders such as SARS-CoV-2,
HBV and HCV have evolved to take advantage of
this apparatus. Our innate antiviral response to both
acute and chronic SARS-CoV-2 infection can be
characterised as a battle of control over E3 ubiquitin
ligases, as viral material attempts to sequester itself
within defective organelles that are resistant to prop-
er mitochondrial homeostasis. In asthma, autophagic
processes are upregulated and correspond to disease
severity. Previous treatment methods have focused
on targeting inflammatory pathways in the hopes
that this would ameliorate the symptoms. While in
mild to moderate cases this may prove effective, se-
vere asthma has both a marked deleterious effect on
the individual and high mortality.

Further metabolomic studies elucidating the
role of mTOR signalling, PINK1-Parkin autophagy
and downstream LC3 and ATG5 mediated au-
tophagosome activity are warranted. Greater under-
standing of the pathophysiology of asthma enables
the development of novel therapeutic interventions
that should revolutionise the treatment of a wide-
spread and severely debilitating illness. Similar pat-
terns of expression in COPD enable comparisons
and allows for further understanding of the meta-
bolic apparatus that underpins disease progression,
which in turn opens new fields for the development
of therapeutics. Finally, the excellent advances in
understanding both the variety, morphology and
function of mitochondrial cation channels, along
with their central role in cellular signalling appara-
tus, provides a promising field of research for future
pharmacological development.
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Y 1poMy OIS NPOaHATI30BAHO CTaH
MITOXOHJIPIaIBHOT'O roMeocTasy, SIKUH
CKIIAZIA€ThCSI 3  TPOIECIB  MITOXOHIPiaIbHOTO
OioreHe3y, CEJEKTHBHOTO BUBEJICHHS IOIIKOA-
KeHUX ab0 JIUCHYHKIIOHATBHUX MITOXOHAPIN,
MITOXOH/IpiaTbHOT TUHAMIKH (3maTTA Ta
MOJIiJT), & TaKOX CHTHAIBHUX CHCTEM peryJsiii
MITOXOH/IpiatbHOTO MeTabomizmy. OcoOauBy yBa-
Ty TIPUJIITIEHO MOAYJIAIIT O10€HePTeTHIHUX MOTPed
TKaHWH 32 yMOB BipycHuX iH]ekmniii SARS-CoV,
renaruty B i C, a Takox ripu OpoHXiadpHiH acTMi.

Kno4yoBi cioBa: MITOXOHApIATBHUN TO-
MEO0CTa3, MITOreHe3, MiTodarisi, 3TUTTS Ta TMOJLI,
MeTabomizM, SARS-CoV-2, renaTur.
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