Tag Archives: reduced glutathione

The antioxidant system in rabbit under combine action of severe heat stress and nanoparticles of zinc, selenium, and germanium citrate

M. O. Yuzviak1*, Y. V. Lesyk1,2, Y. T. Salyha1

1Institute of Animal Biology, National Academy of Agrarian Sciences of Ukraine, Lviv;
2Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine;
*e-mail:maruk7991@gmail.com

Received: 17 December 2024; Revised: 10 March 2025;
Accepted: 25 April 2025; Available on-line: 12 May 2025

It is generally known that rabbits cannot effectively ensure thermoregulation of their body at temperatures above 18-21°C due to the absence of sweat glands and thick fur. Heat stress negatively affects the metabolic processes and reproductive function of rabbits. One of the approaches to mitigating the adverse effects of heat stress is using organic compounds of trace elements created using nanotechnology. Our study aimed to evaluate the antioxidant protection indicators in the blood of animals under conditions of severe heat stress and the introduction of nanoparticles of zinc citrate, selenium, and germanium as a feed additive. Young rabbits of the Termonska Bila breed aged from 35 to 78 days were divided into groups of 6 animals. The control group received the main diet and water without restrictions. Rabbits of experimental groups I, II, and III consumed the same food as the control. Still, within 24 h, they received water: group I – 12 mg Zn/kg, group II – 60 μg Se/kg, group III – 12.5 μg Ge/kg. Within 15 days, the temperature in the room was increased from 28.9 to 30°C for 4 h per day using an electric air heater to provide severe heat stress according to the temperature-humidity index. It was found that the addition of zinc citrate and selenium nanoparticles contributed to positive changes in the functioning of the antioxidant defense system, which was changed due to severe heat stress. In contrast, the protective effect of germanium citrate was less pronounced.

Intensity of peroxidation processes and activity of antioxidant enzymes in rat tissues at high chromium level in the diet

R. Ya. Iskra, V. G. Yanovych

Institute of Animal Biology, National Academy of Agrarian Sciences, Lviv, Ukraine;
e-mail: ruslana_iskra@inenbiol.com.ua

The data on the influence of chromium in different tissues of rats at its consumption with mixed fodder in the form of CrCl3×6H2O on the intensity of peroxidation processes and activity of antioxidant enzymes are presented. The degree of high chromium content in the studied tissues of rats at its addition to mixed fodder in the amount of 200 µg/kg during 30 days was established. Chromium content in the rat tissues decreased in the order: the spleen, heart, kidneys, lungs, brain, liver, skeletal muscle. In all tissues of rats fed with mixed fodder with chromium addition, except for skeletal muscles, content of lipid peroxidation products – hydroperoxide and TBARS-products decreased. The content of lipid peroxidation products decreased in the spleen, kidneys, liver and lungs. Also in all organs and tissues of rats the activity of glutathione peroxidase, glutathione reductase and catalase increased at the action of chromium. In the brain and kidneys the level of reduced glutathione increased. Superoxide dismutase activity was significantly higher not only in the heart and skeletal muscles of animals and is probably equal in the lungs and liver, and in other organs – the brain, kidneys and spleen in animals of the studied group the enzyme activity was lower as compared to animals of the control group. Obtained results demonstrate the regulatory influence of chromium on free radical process in the rat tissues.

Changes in glutathione system and lipid peroxidation in rat blood during the first hour after chlorpyrifos exposure

V. P. Rosalovsky, S. V. Grabovska, Yu. T. Salyha

Institute of Animal Biology, National Academy of Agrarian Sciences of Ukraine, Lviv;
e-mail: ros.volodymyr@gmail.com

Chlorpyrifos (CPF) is a highly toxic organophosphate compound, widely used as an active substance of many insecticides. Along with the anticholinesterase action, CPF may affect other biochemical mechanisms, particularly through disrupting pro- and antioxidant balance and inducing free-radical oxidative stress. Origins and occurrence of these phenomena are still not fully understood. The aim of our work was to investigate the effects of chlorpyrifos on key parameters of glutathione system and on lipid peroxidation in rat blood in the time dynamics during one hour after exposure. We found that a single exposure to 50 mg/kg chlorpyrifos caused a linear decrease in butyryl cholinesterase activity, increased activity of glutathione peroxidase and glutathione reductase, alterations in the levels of glutathione, TBA-active products and lipid hydroperoxides during 1 hour after poisoning. The most significant changes in studied parameters were detected at the 15-30th minutes after chlorpyrifos exposure.