Ukr.Biochem.J. 2024; Volume 96, Issue 2, Mar-Apr, pp. 75-83


Effect of metal nanoparticles usage on oxidative stress indicators and endotoxemia parameters under DMH-induced carcinogenesis

S. B. Kramar1*, I. Ya. Andriichuk2, N. V. Ohinska1, Yu. V. Soroka3,
Z. M. Nebesna1, S. M. Dybkova4, L. S. Rieznichenko4, N. Ye. Lisnychuk2

1Department of Histology and Embryology,
I. Horbachevsky Ternopil National Medical University, Ukraine;
2Central Research Laboratory, I. Horbachevsky Ternopil National Medical University, Ukraine;
3Department of Anaestesiology and Intensive Care,
I. Horbachevsky Ternopil National Medical University, Ukraine;
4F.D. Ovcharenko Institute of Biocolloidal Chemistry,
National Academy of Sciences of Ukraine, Kyiv;

Received: 10 February 2024; Revised: 19 March 2024;
Accepted: 19 March 2024; Available on-line: 30 April 2024

One of the properties of nanoparticles is their ability to correct manifestations of oxidative stress and endotoxemia, which are critical factors in cancer development. Therefore, the work aimed to investigate the effect of the usage of Au/Ag/Fe nanoparticles on oxidative stress indicators and endotoxemia parameters in experimental colon carcinogenesis. The study was performed on 90 white male rats kept in standard vivarium conditions. The division into groups: I – intact animals; II – intact animals with 21 days NPs administration; III – animals injected with N,N-dimethylhydrazine dihydrochloride for 30 weeks; ІV – animals to which Au/Ag/Fe nanoparticles were intragastrically administered daily for 21 days after induced adenocarcinoma. According­ to our results, the concentration of oxidative stress indicators significantly increases under DMH-induced carcinogenesis conditions. It was established that the 21-day intragastric administration of NP Au/Ag/Fe composition caused a significant (P < 0.001) decrease in the concentration of TBARS in the blood serum by 1.33 times, in the content of diene and triene conjugates by 1.63 and 1.98 times, respectively compared to the third experimental group. The introduction of NPs in the fourth experimental group reduces the concentration of the Schiff bases by 1.34 times (P < 0.001), decreases the content of POMP370 and POMP430 by 1.25 (P < 0.001) and 1.37 times (P < 0.001), respectively, compared to the third experimental group. We also observed the reduction of endotoxemia levels in a fourth experimental animal group based on a significant decrease in MMM indexis and EII percentage.

Keywords: , , , ,


  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48. PubMed, CrossRef
  2. Malka D, Lièvre A, André T, Taïeb J, Ducreux M, Bibeau F. Immune scores in colorectal cancer: Where are we? Eur J Cancer. 2020;140:105-118. PubMed, CrossRef
  3. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49. PubMed, CrossRef
  4. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell. 2020;38(2):167-197. PubMed, PubMedCentral, CrossRef
  5. Henkler F, Brinkmann J, Luch A. The role of oxidative stress in carcinogenesis induced by metals and xenobiotics. Cancers (Basel). 2010;2(2):376-396. PubMed, PubMedCentral, CrossRef
  6. Arfin S, Jha NK, Jha SK, Kesari KK, Ruokolainen J, Roychoudhury S, Rathi B, Kumar D. Oxidative Stress in Cancer Cell Metabolism. Antioxidants (Basel). 2021;10(5):642. PubMed, PubMedCentral, CrossRef
  7. Jelic MD, Mandic AD, Maricic SM, Srdjenovic BU. Oxidative stress and its role in cancer. J Cancer Res Ther. 2021;17(1):22-28. PubMed, CrossRef
  8. Manilla V, Di Tommaso N, Santopaolo F, Gasbarrini A, Ponziani FR. Endotoxemia and Gastrointestinal Cancers: Insight into the Mechanisms Underlying a Dangerous Relationship. Microorganisms. 2023;11(2):267. PubMed, PubMedCentral, CrossRef
  9. Pyndus VB, Pyndus TO. Content of middle mass molecules and erythrocyte intoxication index in blood while experimental allergic alveolitis under adrenalin myocardial injury and correction of the injury by thiotriazoline. J Educ Health Sport. 2018;5(2): 319-325. (In Ukrainian).
  10. Netyukhailo LG. Medium-mass molecules as markers of endogenous intoxication in experimental burn disease. Modern Problems of Toxicology. 2005;3:57-58. (In Ukrainian).
  11. Stupnytsky MA, Zhukov VI, Gorbatch TV, Pavlenko AYu, Biletsky OV. Dynamics of average weight molecules concentration in patients with severe concomitant thoracic injury in the acute period of traumatic disease. Travma. 2014;15(4):46-50. (In Ukrainian).
  12. Chekman IS, Govorukha MO, Doroshenko AM. Nanogenotoxicology: influence of the nanoparticles on the cell. Ukr Med J. 2011;1(81):30-35. (In Ukrainian).
  13. Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):85. PubMed, PubMedCentral, CrossRef
  14. Enea M, Pereira E, de Almeida MP, Araújo AM, de Lourdes Bastos M, Carmo H. Gold Nanoparticles Induce Oxidative Stress and Apoptosis in Human Kidney Cells. Nanomaterials (Basel). 2020;10(5):995. PubMed, PubMedCentral, CrossRef
  15. Yeh YC, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4(6):1871-1880. PubMed, PubMedCentral, CrossRef
  16. Milan J, Niemczyk K, Kus-Liśkiewicz M. Treasure on the Earth-Gold Nanoparticles and Their Biomedical Applications. Materials (Basel). 2022;15(9):3355. PubMed, PubMedCentral, CrossRef
  17. Matysiak-Kucharek M, Sawicki K, Kapka-Skrzypczak L. Effect of silver nanoparticles on cytotoxicity, oxidative stress and pro-inflammatory proteins profile in lung adenocarcinoma A549 cells. Ann Agric Environ Med. 2023;30(3):566-569. PubMed, PubMedCentral, CrossRef
  18. Docea AO, Calina D, Buga AM, Zlatian O, Paoliello MMB, Mogosanu GD, Streba CT, Popescu EL, Stoica AE, Bîrcă AC, Vasile BȘ, Grumezescu AM, Mogoanta L. The Effect of Silver Nanoparticles on Antioxidant/Pro-Oxidant Balance in a Murine Model. Int J Mol Sci. 2020;21(4):1233. PubMed, PubMedCentral, CrossRef
  19. Ali A, Zafar H, Zia M, Ul Haq I, Phull AR, Ali JS, Hussain A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 2016;9:49-67. PubMed, PubMedCentral, CrossRef
  20. Rieznichenko LS, Dybkova SM, Doroshenko AM. Iron nanoparticles as an effective means for prevention and treatment of iron deficiency anemia in animals. Vet Biotechnol. 2019;(35): 116-128. (In Ukrainian).
  21. Doroshenko AM, Dybkova SM, Rieznichenko LS, Gruzina TG, Ulberg ZR, Chekman IS. Influence of iron nanoparticles on intestinal microflora of rats with iron deficiency anemia. J Clin Exp Med Res. 2014; 2(3): 292-299.
  22. Min Y, Suminda GGD, Heo Y, Kim M, Ghosh M, Son YO. Metal-Based Nanoparticles and Their Relevant Consequences on Cytotoxicity Cascade and Induced Oxidative Stress. Antioxidants (Basel). 2023;12(3):703. PubMed, PubMedCentral, CrossRef
  23. Trakhtenberg I, Dmytrukha N. The principles, methods and indicators of experimental assessment of metal nanoparticles safety. Modern Probl Toxicol Food Chem Safety. 2016;(4(76)):5-17. (In Ukrainian).
  24. Soldatkin OO, Soldatkina OV, Piliponskiy II, Rieznichenko LS, Gruzina TG, Dybkova SM, Dzyadevych SV, Soldatkin AP. Application of gold nanoparticles for improvement of analytical characteristics of conductometric enzyme biosensors. Appl Nanosci. 2022;12:995-1003. CrossRef
  25. Rieznichenko LS, Rybachuk AV, Bilous SB, Dybkova SM, Gruzina TG, Malanchuk VO. Silver nanoparticles: synthesis, effectiveness in treatment of purulent-inflammatory diseases of the maxillofacial area, development of dosage forms. J Chem Pharm Res. 2016;8(1):332-338.
  26. Reznichenko LS, Dybkova SM, Doroshenko AM, Chekman IS, Ulberg ZR. Synthesis of iron nanoparticles and their biosafety characteristics. Bull Probl Biol Med. 2014; 3, 2(111): 319-323. (In Ukrainian).
  27. Rieznichenko LS, Dybkova SM, Gruzina TG, Ulberg ZR, Todor IN, Lukyanova NYu, Shpyleva SI, Chekhun VF. Gold nanoparticles synthesis and biological activity estimation in vitro and in vivo. Exp Oncol. 2012;34(1):25-28. PubMed
  28. Reznichenko LS, Doroshenko AM, Dybkova SM, Gruzina TG, Ulberg ZR, Chekman IS. Estimation of iron nanoparticles’ substance biosafety in vitro and in vivo. Galician Med J. 2014; 21(3):87-90.
  29. Ryzhenko GF, Dybkova SM, Gorbatyuk OI, Andriyashchuk VA, Zhovnir OM, Tiutiun SM, Reznichenko LS, Gruzina TG. Screening of metal nanoparticles for application in biotechnology of veterinary immunobiological agents. Vet Biotechnol. 2017;(30):206-213. (In Ukrainian). CrossRef
  30. Gromashevska LL. “Medium molecules” as one of the indicators of “metabolic intoxication” in the body. Lab Diagn. 1997;(1):11-15. (In Ukrainian)
  31. Lisnychuk NE, Andriychuk IYa, Soroka YuV. Biological markers of endotoxemia in conditions of induced oncogenesis. Inform Letter, 2017;278, 1-7. (In Ukrainian).
  32. Vlizlo VV, Fedoruk RS, Ratych IB. Laboratory research methods in biology, animal husbandry and veterinary medicine: a guide. Ed. VlizloVV. Lviv: SPOLOM, 2012. 76 p. (In Ukrainian).
  33. More MS, Joshi PG, Mishra YK, Khanna PK. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review. Mater Today Chem. 2019;14:100195. PubMed, PubMedCentral, CrossRef
  34. Taburets OV, Dvorshchenko, KO, Vereshchaka VV, Berehova TV, Ostapchenko LI. (2017). Oxidative modification of blood serum proteins under the conditions of simulating an excised planar wound in rats. Bull Probl Biol Med. 2017; 1(3):219-223. (In Ukrainian).
  35. Lisnychuk NYe, Andriichuk IYa, Soroka YuYa, Stravska MV, Yavorska SI. Influence of induced carcinogenesis on biological markers of endotoxemia. World Med Biol. 2018;(1(63)):137-140. CrossRef
  36. Soroka YV, Volkov KS, Lisnychuk NE. Structural reorganization of the liver under conditions of experimental carcinogenesis. Bull Morphol. 2014;20(1):122-127. (In Ukrainian).

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.