Ukr.Biochem.J. 2025; Volume 97, Issue 6, Nov-Dec, pp. 122-133
doi: https://doi.org/10.15407/ubj97.06.122
Therapeutic potential of topical autologous angiostatin application in managing tuberculosis-related corneal injury: a case report
N. Greben1*, I. Gavryliak1, V. Bilous2,
V. Korsa2, A. Tykhomyrov2
1Department of Ophthalmology, Bogomolets National Medical University, Kyiv, Ukraine;
2Department of Enzyme Chemistry and Biochemistry,
Palladin Institute of Biochemistry, Kyiv, Ukraine;
*e-mail: nkgreden@ukr.net
Received: 03 June 2025; Revised: 17 September 2025;
Accepted: 28 November 2025; Available on-line: 29 December 2025
Ocular tuberculosis (TB) is a vision-threatening condition that frequently manifests as corneal neovascularization and stromal keratitis, which triggers a cascade of inflammatory and hypoxia-driven responses. Conventional therapeutic approaches, including corticosteroids and antimicrobial agents, often fail to halt disease progression. Here, we report a case of a 50-year-old patient diagnosed with TB-associated keratitis, unresponsive to standard treatment. The aim of the study was to evaluate the effectiveness of the alternative therapeutic strategy involving topical administration of angiostatin, a natural anti-angiogenic polypeptide derived from the autologous plasminogen. Solution of angiostatin fragment containing the first three kringle domains (K1-3) was applied in a two doses of eye drops (~15 μg per administration) five times daily for 2 months, with a cumulative exposure of approximately 4.5 mg. Treatment efficacy was monitored using both standard ophthalmologic assessments and non-invasive biochemical indicators such as the levels of hypoxia-inducible factor HIF-1α, vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP-9), fibrinogen/fibrin (Fg/Fb) and lactoferrin measured the in tear fluid across treatment time points (Day 0, 14, and 61) using Western blot analysis. The high intensity of HIF-1 α, VEGF and MMP-9 expression, Fg/Fb accumulation and the presence of low-molecular-weight fragments of lactoferrin were detected in the tear fluid prior to the treatment. Following angiostatin therapy, the patient exhibited marked regression of corneal neovascularization and restoration of corneal transparency, complemented with normalization of HIF-1α, VEGF, and MMP-9 levels, reduced Fg/Fb accumulation and the presence of intact lactoferrin in the tear fluid. The data obtained demonstrated a multifactorial mechanism of angiostatin action that extends beyond classical anti-angiogenic pathways. The convergence of clinical and molecular indicators of recovery underscores the potential of angiostatin application as a safe and effective therapeutic alternative for managing corneal complications in ocular TB, particularly in cases resistant to conventional treatment.
Keywords: angiostatin, corneal injury, HIF-1α, lactoferrin, MMP-9, ocular tuberculosis, tear fluid, VEGF
References:
- World Health Organization. Global Tuberculosis Report 2024. https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2024
- Putera I, Ten Berge JCEM, Thiadens AAHJ, Dik WA, Agrawal R, van Hagen PM, La Distia Nora R, Rombach SM. Relapse in ocular tuberculosis: relapse rate, risk factors and clinical management in a non-endemic country. Br J Ophthalmol. 2024;108(12):1642-1651. PubMed, PubMedCentral, CrossRef
- Abd ZA. Tuberculosis of the eye, case series study. J Med Life. 2022;15(8):1058-1062.
PubMed, PubMedCentral, CrossRef - Tsui JK, Poon SHL, Fung NSK. Ocular manifestations and diagnosis of tuberculosis involving the uvea: a case series. Trop Dis Travel Med Vaccines. 2023;9(1):20. PubMed, PubMedCentral, CrossRef
- Sharif Z, Sharif W. Corneal neovascularization: updates on pathophysiology, investigations & management. Rom J Ophthalmol. 2019;63(1):15-22. PubMed, PubMedCentral
- Drzyzga Ł, Śpiewak D, Dorecka M, Wyględowska-Promieńska D. Available Therapeutic Options for Corneal Neovascularization: A Review. Int J Mol Sci. 2024;25(10):5479. PubMed, PubMedCentral, CrossRef
- Ambati BK, Joussen AM, Ambati J, Moromizato Y, Guha C, Javaherian K, Gillies S, O’Reilly MS, Adamis AP. Angiostatin inhibits and regresses corneal neovascularization. Arch Ophthalmol. 2002;120(8):1063-1068. PubMed, CrossRef
- Chen YH, Wu HL, Chen CK, Huang YH, Yang BC, Wu LW. Angiostatin antagonizes the action of VEGF-A in human endothelial cells via two distinct pathways. Biochem Biophys Res Commun. 2003;310(3):804-810. PubMed, CrossRef
- Bilous VL, Tykhomyrov AO. Multiple effects of angiostatins in injured cornea. Ukr Biochem J. 2024;96(1):37-48. CrossRef
- Bilous VL, Greben NK, Gavryliak IV, Ağca CA. Beneficial effects of angiostatin K1-3 and lactoferrin in alkali-burned rabbit cornea: a comparative study. Biotechnol Acta. 2024;17(3):47-58. CrossRef
- Lee TY, Muschal S, Pravda EA, Folkman J, Abdollahi A, Javaherian K. Angiostatin regulates the expression of antiangiogenic and proapoptotic pathways via targeted inhibition of mitochondrial proteins. Blood. 2009;114(9):1987-1998. PubMed, PubMedCentral, CrossRef
- Radziwon-Balicka A, Ramer C, Moncada de la Rosa C, Zielnik-Drabik B, Jurasz P. Angiostatin inhibits endothelial MMP-2 and MMP-14 expression: a hypoxia specific mechanism of action. Vascul Pharmacol. 2013;58(4):280-291. PubMed, CrossRef
- Tykhomyrov AA, Yusova EI, Diordieva SI, Korsa VV, Grinenko TV. Production and characterization of antibodies against K1-3 fragment of human plasminogen. Biotechnol Acta. 2013;6(1):86-96. CrossRef
- Tykhomyrov A, Yusova O, Kapustianenko L, Bilous V, Drobotko T, Gavryliak I, Greben N, Ağca CA. Production of anti-lactoferrin antibodies and their application in analysis of the tear fluid in health and corneal injuries. Biotechnol Acta. 2022;15(5):31-40. CrossRef
- Ludi Z, Sule AA, Samy RP, Putera I, Schrijver B, Hutchinson PE, Gunaratne J, Verma I, Singhal A, Nora RD, van Hagen PM, Dik WA, Gupta V, Agrawal R. Diagnosis and biomarkers for ocular tuberculosis: From the present into the future. Theranostics. 2023;13(7):2088-2113. PubMed, PubMedCentral, CrossRef
- Sharma M, Arora A, Gupta V. Kaleidoscope of ocular tuberculosis. Eye (Lond). 2025;39:1234-1237. PubMed, CrossRef
- Mondal I, Anand N, Mishra P, Kumar S. Phlyctenular keratoconjunctivitis and tuberculosis. J Med Sci Clin Res. 2017;5(6):23692-23693. CrossRef
- Kutlutürk Karagöz I, Kaya M, Kıvrak U, Munk MR. Exploring the molecular intersection of posterior ocular tuberculosis: Mycobacterium tuberculosis proteins, ocular autoimmunity, and immune receptor interactions. Ophthalmol Sci. 2024;5(3):100698. PubMed, PubMedCentral, CrossRef
- Berger T, Flockerzi E, Berger M, Chai N, Stachon T, Szentmáry N, Seitz B. Expression of matrix metalloproteinases and their inhibitors in corneal stromal fibroblasts and keratocytes from healthy and keratoconus corneas. Graefes Arch Clin Exp Ophthalmol. 2025;263(2):467-475. PubMed, PubMedCentral, CrossRef
- Yang H, Liu M, Song S, Xu Q, Lee J, Sun J, Xue S, Sun X, Che C. HIF-1α Promotes Inflammatory Responses in Aspergillus Fumigatus Keratitis by Activating Pyroptosis Through Caspase-8/GSDMD Pathway. Invest Ophthalmol Vis Sci. 2025;66(6):32. PubMed, PubMedCentral, CrossRef
- Christoffersson G, Vågesjö E, Vandooren J, Lidén M, Massena S, Reinert RB, Brissova M, Powers AC, Opdenakker G, Phillipson M. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood. 2012;120(23):4653-4662. PubMed, PubMedCentral, CrossRef
- Albini A, Brigati C, Ventura A, Lorusso G, Pinter M, Morini M, Mancino A, Sica A, Noonan DM. Angiostatin anti-angiogenesis requires IL-12: the innate immune system as a key target. J Transl Med. 2009;7:5. PubMed, PubMedCentral, CrossRef
- Moser TL, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, Cheek DJ, Pizzo SV. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci USA. 2001;98(12):6656-6661. PubMed, PubMedCentral, CrossRef
- Wang Y, Zheng L, Zhang L, Tai Y, Lin X, Cai Z. Roles of MMP-2 and MMP-9 and their associated molecules in the pathogenesis of keloids: a comprehensive review. Front Pharmacol. 2024;15:1444653. PubMed, PubMedCentral, CrossRef
- Aulakh GK, Balachandran Y, Liu L, Singh B. Angiostatin inhibits activation and migration of neutrophils. Cell Tissue Res. 2014;355(2):375-396. PubMed, CrossRef
- Chavakis T, Athanasopoulos A, Rhee JS, Orlova V, Schmidt-Wöll T, Bierhaus A, May AE, Celik I, Nawroth PP, Preissner KT. Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood. 2005;105(3):1036-1043. PubMed, CrossRef
- Ponzini E, Scotti L, Grandori R, Tavazzi S, Zambon A. Lactoferrin Concentration in Human Tears and Ocular Diseases: A Meta-Analysis. Invest Ophthalmol Vis Sci. 2020;61(12):9. PubMed, PubMedCentral, CrossRef
- Ongena R, Dierick M, Vanrompay D, Cox E, Devriendt B. Lactoferrin impairs pathogen virulence through its proteolytic activity. Front Vet Sci. 2024;11:1428156. PubMed, PubMedCentral, CrossRef
- Sienkiewicz M, Jaśkiewicz A, Tarasiuk A, Fichna J. Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit Rev Food Sci Nutr. 2022;62(22):6016-6033. PubMed, CrossRef
- Gavrylyak I, Zhaboiedov D, Greben N, Tykhomyrov A. Tear lactoferrin and ceruloplasmin levels in patients with traumatic and recurrent corneal erosions. Ukr J Ophtalmol. 2024;(1):8-14. CrossRef
This work is licensed under a Creative Commons Attribution 4.0 International License.







