Screening of soybean plants for Rsv1 resistance gene and antioxidant enzyme isoforms under conditions of soybean mosaic virus infection

L. T. Mishchenko1*, O. О. Molodchenkova2*, A. A. Dunich1,
I. A. Mishchenko3, A. V. Dashchenko3, P. S. Tykhonov2,
I. I. Motsniy2, Ya. S. Fanin2

1Taras Shevchenko National University of Kyiv, ESC “Institute of Biology and Medicine”, Ukraine;
*e-mail: lmishchenko@ukr.net;
2Plant Breeding and Genetics Institute – National Center of Seed and Cultivar Investigation,
Laboratory of Plant Biochemistry, Odesa, Ukraine;
*e-mail: olgamolod@ukr.net;
3National University of Life and Environmental Sciences of Ukraine, Kyiv

Received: 11 May 2025; Revised: 20 August 2025;
Accepted: 30 January 2026; Available on-line: February 2026

Soybean mosaic virus (SMV) infection is recognized as the most serious, long-standing problem in soybean producing areas in the world. The Rsv1 locus is a part of resistance genes family involved in plant defense mechanisms against pathogens. Rsv1 and antioxidant enzymes peroxidase and superoxide dismutase are known for their role in providing resistance to the soybean mosaic virus. This work aimed at screening soybean plants both SMV infected and healthy on the presence of Rsv1 locus and peroxidase and superoxide dismutase isozyme patterns. The presence of 3gG2 gene at the Rsv1 locus was detected with PCR in uninfected plants of 17 studied soybean varieties. The presence of 3gG2 gene was also revealed in SMV-infected plants of four varieties indicating that the gene was not expressed in these plants. electrophoresis in PAAG demonstrated that the spectrum of peroxidase and superoxide dismutase isoforms in soybean leaf tissues depends on genotype specificity and the presence/absence of the 3gG2 gene at the Rsv1 locus. The outcome of work will be useful for identification genotypes resistant to SMV and their implementation in soybean breeding programs in Ukraine.

Keywords: , , ,


References:

  1. Rotundo JL, Marshall R, McCormick R, Truong SK, Styles D, Gerde JA, Gonzalez-Escobar E, Carmo-Silva E, Janes-Bassett V, Logue J, Annicchiarico P, de Visser C, Dind A, Dodd IC, Dye L, Long SP, Lopes MS, Pannecoucque J, Reckling M, Rushton J, Schmid N, Shield I, Signor M, Messina CD, Rufino MC. European soybean to benefit people and the environment. Sci Rep. 2024;14(1):7612. PubMed, PubMedCentral, CrossRef
  2. Mishchenko L, Dunich A, Mishchenko I, Molodchenkova O. Molecular and biological properties of soybean mosaic virus and its influence on the yield and quality of soybean under climate change conditions. Agric For. 2018;64(4):39-47. CrossRef
  3. Molodchenkova OО, Dashchenko AV, Mishchenko IA, Dunich AA, Motsniy II,Tykhonov PS, Mishchenko LT. The impact of soybean mosaic virus infection on biochemical composition of soybean seed. Ukr Biochem J. 2025;97(1):80-89. CrossRef
  4. He D, Wu X, Liu Z, Yang Q, Shi X, Song Q, Shi A, Li D, Yan L. Genome-Wide Association Study and Genomic Prediction of Soybean Mosaic Virus Resistance. Int J Mol Sci. 2025;26(5):2106. PubMed, PubMedCentral, CrossRef
  5. Noman A, Aqeel M, Lou Y. PRRs and NB-LRRs: From Signal Perception to Activation of Plant Innate Immunity. Int J Mol Sci. 2019;20(8):1882. PubMed, PubMedCentral, CrossRef
  6. Wu CH, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, Vossen JH, Kamoun S. NLR network mediates immunity to diverse plant pathogens. Proc Natl Acad Sci USA. 2017;114(30):8113-8118. PubMed, PubMedCentral, CrossRef
  7. Cesari S. Multiple strategies for pathogen perception by plant immune receptors. New Phytol. 2018;219(1):17-24. PubMed, CrossRef
  8. Zhu M, Feng M, Tao X. NLR-mediated antiviral immunity in plants. J Integr Plant Biol. 2025;67(3):786-800. PubMed, CrossRef
  9. Cho EK, Goodman RM. Strains of soybean mosaic virus: Classification based on virulence in resistant soybean cultivars. Phytopathology. 1979;69(5):467-470. CrossRef
  10. Takahashi K, Tanaka T, Lida W. Occurrence of strains of soybean mosaic and dwarf virus. Ann Phytopathol Soc Jpn. 1963;28:87.
  11. Wang D, Tian Z, Li K, Li H, Huang Z, Hu G, Zhang L, Zhi H. Identification and variation analysis of soybean mosaic virus strains in Shandong, Henan and Anhui provinces of China. Soybean Sci. 2013;32:806-809.
  12. Karaca M. Isozymes as biochemical markers in plant genetics. Int J AgriSci. 2013;3(11):851-861.
  13. Omara RI, Abdelaal KAA. Biochemical, histopathological and genetic analysis associated with leaf rust infection in wheat plants (Triticum aestivum L.). Physiol Mol Plant Pathol. 2018;104:48-57. CrossRef
  14. 14. Maurya R, Namdeo M. Superoxide dismutase: A key enzyme for the survival of intracellular pathogens in host. In: Ahmad R, ed. Reactive Oxygen Species. InTechOpen; 2021.
    CrossRef
  15. Huseynova IM, Mirzayeva SM, Sultanova NF, Aliyeva DR, Mustafayev NSH, Aliyev JA. Virus-induced changes in photosynthetic parameters and peroxidase isoenzyme contents in tomato (Solanum lycopersicum L.) plants. Photosynthetica. 2018;56(3):841-850. CrossRef
  16. Hakmaoui A, Pérez-Bueno ML, García-Fontana B, Camejo D, Jiménez A, Sevilla F, Barón M. Analysis of the antioxidant response of Nicotiana benthamiana to infection with two strains of Pepper mild mottle virus. J Exp Bot. 2012;63(15):5487-5496. PubMed, PubMedCentral, CrossRef
  17. Mishchenko L, Nazarov T, Dunich A, Mishchenko I, Ryshchakova O, Motsnyi I, Dashchenko A, Bezkrovna L, Fanin Y, Molodchenkova O, Smertenko A. Impact of Wheat Streak Mosaic Virus on Peroxisome Proliferation, Redox Reactions, and Resistance Responses in Wheat. Int J Mol Sci. 2021;22(19):10218. PubMed, PubMedCentral, CrossRef
  18. Rui R, Liu S, Karthikeyan A, Wang T, Niu H, Yin J, Yang Y, Wang L, Yang Q, Zhi H, Li K. Fine-mapping and identification of a novel locus Rsc15 underlying soybean resistance to Soybean mosaic virus. Theor Appl Genet. 2017;130(11):2395-2410. PubMed, CrossRef
  19. Dunich A, Kyrychenko S, Mishchenko I, Molodchenkova O, Bondus R, Dashenko A, Mishchenko L. Diagnostics of the most dangerous potato and soybean viruses in 2024 as the first stage in the search for donors of genes responsible for resistance to viruses. Quarantine Plant Protection. 2024;(4(279)):12-17. (In Ukrainian). CrossRef
  20. Shi A, Chen P, Zheng C, Hou A, Zhang B. A PCR-based marker for the Rsv1 locus conferring resistance to soybean mosaic virus. Crop Sci. 2008; 48(1):262-268. CrossRef
  21. Toptikov VA, Diachenko LF, Totsky VM, Babayants LT. The state of gene-enzyme systems of wheat seedlings under leaf rust pathogene infection. Odesa Nat Univ Herald. Biology. 2006;11(9):128-139. (In Ukrainian).
  22. Zhu F, Zhu PX, Xu F, Che YP, Ma YM, Ji ZL. Alpha-momorcharin enhances Nicotiana benthamiana resistance to tobacco mosaic virus infection through modulation of reactive oxygen species. Mol Plant Pathol. 2020;21(9):1212-1226. PubMed, PubMedCentral, CrossRef
  23. Penel C. The peroxidase system in higher plants. In: Greppin H, Penel C, Broughton WJ, Strasser R., eds. Integrated Plant Systems. Geneva: Univ. of Geneva; 2000:359-367.
  24. Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol. 2001;42(5):462-468. PubMed, CrossRef
  25. Bahar T, Qureshi AM, Qurashi F, Abid M, Zahra MB, Haider MS. Changes in phyto-chemical status upon viral infections in plant: a critical review. Phyton Int J Exp Bot. 2021;90(1):75-86. CrossRef
  26. Lüthje S, Martinez-Cortes T. Membrane-Bound Class III Peroxidases: Unexpected Enzymes with Exciting Functions. Int J Mol Sci. 2018;19(10):2876. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.