Reparative osteogenesis markers during bone defects substitution with germanium-doped ceramics under experimental osteoporosis
T. Todosiuk1*, V. Chemerovskiy1, А. Rublenko2,
N. Ulianchych3, V. Kolomiiets3, S. Firstov3
1Bila Tserkva National Agrarian University, Bila Tserkva, Ukraine;
2Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University, Vinnytsia, Ukraine;
3Frantsevich Institute for Problems of Materials Science,
National Academy of Sciences of Ukraine, Kyiv;
*e-mail: tatyana.todosyuk@gmail.com
Received: 04 June 2025; Revised: 05 August 2025;
Accepted: 30 January 2026; Available on-line: February 2026
Osteoporosis, as a systemic skeletal disease, is characterized by the loss of bone mass, decreased mineral density, and microarchitecture changes. In cases of traumatic fractures and critical-size bone defects osteoporosis can lead to spontaneous fractures, impair regeneration and complication when using bone substituting materials. Ceramic implants, doped with germanium to impart osteoinductive properties, are among promising bone substituting materials. In this study we aimed to assess biochemical markers of reparative osteogenesis at bone defects substitution with germanium-doped ceramics in rabbits under osteoporosis. The study was conducted on California White rabbits with osteoporosis, induced by administration of 0.4% dexamethasone solution. The model defects were created in trabecular and cortical bones, following the exposure of the periosteum with drills of 3 and 4.2 mm diameters, respectively, in compliance with the anesthetic regimen and antiseptic rules. Calcium phosphate ceramic granules with a size of 700 μm, synthesized from hydroxyapatite and β-tricalcium phosphate and doped with 0.8 mass.% germanium (CPC-Ge) were used for healing. In the control group of animals (n = 9) bone defects were healed under a blood clot. In the experimental group (n = 9), the defects were replaced with CPC-Ge granules. Blood samples for biochemical studies were collected before modeling the bone defect and on the 7th, 14th, 30th, and 60th days of reparative osteogenesis. The activity of tartrate-resistant acid phosphatase, alkaline phosphatase and its bone isoenzyme, as well as circulating immune complexes, protein C and NO serum levels were determined. It was shown that substitution of both trabecular and cortical bones defects with CPC-Ge, as compared to healing under a blood clot, leads to reduced inflammatory and immune responses, prevented the depletion of protein C and promotes a more dynamic course of reparative osteogenesis in animals with glucocorticoid-induced osteoporosis.
Keywords: calcium phosphate ceramic granules, germanium, immune complexes, nitric oxide, osteoporosis, osteosubstitution, phosphatases, protein C, reparative osteogenesis
References:
- Konovalenko VF, Ternovyi NK, Tuz EV, Protsenko VV, Solonitsyn EO, Abudayeh A, Drobotun OV, Ulianchych NV. Experimental substantiation of the use of hydroxyapatite – tricalcium phosphate bioceramics for replacing bone defects after tumor removal. Exp Oncol. 2021;43(3):237-241. PubMed, CrossRef
- Tang G, Liu Z, Liu Y, Yu J, Wang X, Tan Z, Ye X. Recent Trends in the Development of Bone Regenerative Biomaterials. Front Cell Dev Biol. 2021;9:665813. PubMed, PubMedCentral, CrossRef
- Grzeskowiak RM, Schumacher J, Dhar MS, Harper DP, Mulon PY, Anderson DE. Bone and Cartilage Interfaces With Orthopedic Implants: A Literature Review. Front Surg. 2020;7:601244. PubMed, PubMedCentral, CrossRef
- Marongiu G, Dolci A, Verona M, Capone A. The biology and treatment of acute long-bones diaphyseal fractures: Overview of the current options for bone healing enhancement. Bone Rep. 2020;12:100249.
PubMed, PubMedCentral, CrossRef - Mazanova AO, Makarova OO, Khomenko AV, Vasylevska VM, Lototska OYu, Shymanskyi IO, Veliky MM. The impact of vitamin D3 on bone remodeling in different types of experimental pathology. Ukr Biochem J. 2022;94(3):5-15. CrossRef
- Dar HY, Singh A, Shukla P, Anupam R, Mondal RK, Mishra PK, Srivastava RK. High dietary salt intake correlates with modulated Th17-Treg cell balance resulting in enhanced bone loss and impaired bone-microarchitecture in male mice. Sci Rep. 2018;8(1):2503. PubMed, PubMedCentral, CrossRef
- Augat P, Simon U, Liedert A, Claes L. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int. 2005;16(Suppl 2):S36-S43. PubMed, CrossRef
- Beil FT, Barvencik F, Gebauer M, Seitz S, Rueger JM, Ignatius A, Pogoda P, Schinke T, Amling M. Effects of estrogen on fracture healing in mice. J Trauma. 2010;69(5):1259-1265. PubMed, CrossRef
- Lee JW, Park SJ, Park YJ, Jeong S, Song J, Kim HJ, Chang J, Kim KH, Kim JS, Oh YH, Cho Y, Park SM. Association between antibiotics use and osteoporotic fracture risk: a nationally representative retrospective cohort study. Arch Osteoporos. 2024;19(1):81. PubMed, PubMedCentral, CrossRef
- Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22(3):465-475. PubMed, CrossRef
- Kostenko E, Pockevičius A, Maknickas A. Histomorphometry and μCT scan analysis of osteoporosis in spayed female dogs. Open Vet J. 2023;13(1):1-10. PubMed, PubMedCentral, CrossRef
- Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005;115(12):3318-3325. PubMed, PubMedCentral, CrossRef
- Nuti R, Brandi ML, Checchia G, Di Munno O, Dominguez L, Falaschi P, Fiore CE, Iolascon G, Maggi S, Michieli R, Migliaccio S, Minisola S, Rossini M, Sessa G, Tarantino U, Toselli A, Isaia GC. Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med. 2019;14(1):85-102. PubMed, PubMedCentral, CrossRef
- Ensrud KE, Crandall CJ. Osteoporosis. Ann Intern Med. 2017;167(3):ITC17-ITC32. PubMed, CrossRef
- Muroi N, Shimada M, Murakami S, Akagi H, Kanno N, Suzuki S, Harada Y, Orima H, Hara Y. A Retrospective Study of Postoperative Development of Implant-Induced Osteoporosis in Radial-Ulnar Fractures in Toy Breed Dogs Treated with Plate Fixation. Vet Comp Orthop Traumatol. 2021;34(6):375-385. PubMed, CrossRef
- McKenzie BA. Comparative veterinary geroscience: mechanism of molecular, cellular, and tissue aging in humans, laboratory animal models, and companion dogs and cats. Am J Vet Res. 2022;83(6):ajvr.22.02.0027. PubMed, CrossRef
- Ilić D, Stojanović L, Antonijević D, Milutinović-Smiljanić S, Savić-Stanković T, Milosavljević Ž. Measuring of Mandible Bone Density in Dogs Using /Digital Radiography/ Radiovisigraphy. Acta Vet. 2020;70(3):285-295. CrossRef
- Ettinger MP. Aging bone and osteoporosis: strategies for preventing fractures in the elderly. Arch Intern Med. 2003;163(18):2237-2246. PubMed, CrossRef
- Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;6:16. PubMed, PubMedCentral, CrossRef
- Ignatius A, Schoengraf P, Kreja L, Liedert A, Recknagel S, Kandert S, Brenner RE, Schneider M, Lambris JD, Huber-Lang M. Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1β. J Cell Biochem. 2011;112(9):2594-2605. PubMed, PubMedCentral, CrossRef
- Dedukh N, Nikolchenko O. Bone regeneration in alimentary osteoporosis (an experimental study). Orthop Traumatol Prosthet. 2009;(2):34-40. (In Ukrainian). CrossRef
- Povoroznyuk V, Makogonchuk A. Impact of Systemic Osteoporosis on Reparative Regeneration of Bone Tissue. Trauma. 2013;14(2):59-62. CrossRef
- Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165-176. PubMed, CrossRef
- Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 1998;95(7):3597-3602. PubMed, PubMedCentral, CrossRef
- Xiong J, Cawley K, Piemontese M, Fujiwara Y, Zhao H, Goellner JJ, O’Brien CA. Soluble RANKL contributes to osteoclast formation in adult mice but not ovariectomy-induced bone loss. Nat Commun. 2018;9(1):2909. PubMed, PubMedCentral, CrossRef
- Asano T, Okamoto K, Nakai Y, Tsutsumi M, Muro R, Suematsu A, Hashimoto K, Okamura T, Ehata S, Nitta T, Takayanagi H. Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nat Metab. 2019;1(9):868-875. PubMed, CrossRef
- Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393(10169):364-376. PubMed, CrossRef
- Onal M, Xiong J, Chen X, Thostenson JD, Almeida M, Manolagas SC, O’Brien CA. Receptor activator of nuclear factor κB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J Biol Chem. 2012;287(35):29851-29860. PubMed, PubMedCentral, CrossRef
- Fujiwara Y, Piemontese M, Liu Y, Thostenson JD, Xiong J, O’Brien CA. RANKL (Receptor Activator of NFκB Ligand) Produced by Osteocytes Is Required for the Increase in B Cells and Bone Loss Caused by Estrogen Deficiency in Mice. J Biol Chem. 2016;291(48):24838-24850. PubMed, PubMedCentral, CrossRef
- de Groot AF, Appelman-Dijkstra NM, van der Burg SH, Kroep JR. The anti-tumor effect of RANKL inhibition in malignant solid tumors – A systematic review. Cancer Treat Rev. 2018;62:18-28. PubMed, CrossRef
- Chu L, Liu X, He Z, Han X, Yan M, Qu X, Li X, Yu Z. Articular Cartilage Degradation and Aberrant Subchondral Bone Remodeling in Patients with Osteoarthritis and Osteoporosis. J Bone Miner Res. 2020;35(3):505-515. PubMed, CrossRef
- Cole HA, Ohba T, Nyman JS, Hirotaka H, Cates JM, Flick MJ, Degen JL, Schoenecker JG. Fibrin accumulation secondary to loss of plasmin-mediated fibrinolysis drives inflammatory osteoporosis in mice. Arthritis Rheumatol. 2014;66(8):2222-2233. PubMed, PubMedCentral, CrossRef
- Alexander KA, Chang MK, Maylin ER, Kohler T, Müller R, Wu AC, Van Rooijen N, Sweet MJ, Hume DA, Raggatt LJ, Pettit AR. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res. 2011;26(7):1517-1532. PubMed, CrossRef
- Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20(3):291-302. PubMed, PubMedCentral, CrossRef
- Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O. Functional Relationship between Osteogenesis and Angiogenesis in Tissue Regeneration. Int J Mol Sci. 2020;21(9):3242. PubMed, PubMedCentral, CrossRef
- Schlundt C, El Khassawna T, Serra A, Dienelt A, Wendler S, Schell H, van Rooijen N, Radbruch A, Lucius R, Hartmann S, Duda GN, Schmidt-Bleek K. Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone. 2018;106:78-89. PubMed, CrossRef
- Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J Orthop Trauma. 2019;33(4):203-213. PubMed, CrossRef
- Allison DC, Lindberg AW, Samimi B, Mirzayan R Menendez LR. A Comparison of Mineral Bone Graft Substitutes for Bone Defects. Onco Hematol Review (US). 2011;7(1):38-49. CrossRef
- Rublenko MV, Todosiuk TP, Chemerovskyi VO, Ulianchych NV, Firstov SO, Kolomiiets VV. Osteoreplacement with calcium phosphate ceramics doped with silicon and germanium in bone fractures in animals: scientific and practical monograph. Ed. Rublenko M V. Bila Tserkva: BNAU, 2023. 83 p.
- Dedukh N, Batura I. Structural-metabolic peculiarities of the bone tissue and reparative osteogenesis in conditions of experimental glucocorticoid-induced osteoporosis (a literature review). Orthop Traumatol Prosthet. 2010;(3):133-138. (In Ukrainian). CrossRef
- Recker RR. Prevention of osteoporosis: calcium nutrition. Osteoporos Int. 1993;3(Suppl 1):163-165. PubMed, CrossRef
- Gopkalova IV, Dedukh NV, Ashukina NA, Bengus LM. Vertebral Bone Morphology in Male Rats after Orchiectomy and L-Thyroxine Administration. Probl Endocrin Pathol. 2009; (4):94-102.
- Pant H, Balasubramanian S, Petla A. Singh index. Reference article, Radiopaedia.org (Accessed on 27 Oct 2023). CrossRef
- Watts NB, Harris ST, Genant HK, Wasnich RD, Miller PD, Jackson RD, Licata AA, Ross P, Woodson GC 3rd, Yanover MJ, et al. Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. N Engl J Med. 1990;323(2):73-79. PubMed, CrossRef
- Chernyshenko V, Shteinberg K, Lugovska N, Ryzhykova M, Platonova T, Korolova D, Lugovskoy E. Preparation of highly-concentrated autologous platelet-rich plasma for biomedical use. Ukr Biochem J. 2019;91(2):19-27. CrossRef
- Rublenko MV, Chemerovskiy VA, Ulyanchich NV, Savchuk AN, Halenova TI, Raksha NG. (). Dynamics of cytokines in osteosis splinter fractures replacement in dogs with hydroxyapatite ceramics silicon-doped. Sci Messenger LNU Veter Med Biotechnol. Ser Vet Sci. 2021;23(102):29-36. CrossRef
- Todosiuk T, Rublenko M, Chemerovskiy V, Ulianchych N, Kolomiiets V. Histomorphological evaluation of osteoreplacement with germanium-doped calcium phosphate ceramics for model bone defects in rabbits. Turkish J Vet Anim Sci. 2024;48(3):138-149. CrossRef
- Cheng L, Yu T, Shi Z. Osteoinduction Mechanism of Calcium Phosphate Biomaterials In Vivo: A Review. J Biomat Ttissue Eng. 2017;7(10):911-918. CrossRef
- Moore DC, Chapman MW, Manske D. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defects. J Orthop Res. 1987;5(3):356-365. PubMed, CrossRef
- Manjubala I, Sastry TP, Kumar RV. Bone in-growth induced by biphasic calcium phosphate ceramic in femoral defect of dogs. J Biomater Appl. 2005;19(4):341-360. PubMed, CrossRef
- Ducheyne P, Beight J, Cuckler J, Evans B, Radin S. Effect of calcium phosphate coating characteristics on early post-operative bone tissue ingrowth. Biomaterials. 1990;11(8):531-540. PubMed, CrossRef
- Rublenko M, Chemerovskіy V, Vlasenko V, Ulyanchich N, Klimenko P. Dynamics of biochemical bone and endothelial parameters during the replacement of bone defects in dogs with hydroxyapatite ceramic doped with silicon. Nauk Vìsn Vet Med. 2021;(1):191-200. CrossRef
- Chemerovskiy VO, Rublenko MV, Rublenko SV, Ulanchych NV, Firstov SO, Kolomiiets VV. Effect of implants of hydroxyapatite with tricalcium phosphates alloyed with Si on histomorphological and biochemical parameters in cases of bone defects of rabbits. Regul Mech Biosyst. 2021;12(2):281-288. CrossRef
- Schwarz F, Herten M, Ferrari D, Wieland M, Schmitz L, Engelhardt E, Becker J. Guided bone regeneration at dehiscence-type defects using biphasic hydroxyapatite + beta tricalcium phosphate (Bone Ceramic) or a collagen-coated natural bone mineral (BioOss Collagen): an immunohistochemical study in dogs. Int J Oral Maxillofac Surg. 2007;36(12):1198-1206. PubMed, CrossRef
- Shevchenko S, Rublenko M. The effect of osteosubstitution by platelet-rich autofibrin and hydroxyapatite ceramic with ß-tricalcium phosphate on biochemical parameters of blood in rabbits. Turkish J Vet Anim Sci. 2022;46(4):599-608. CrossRef
- Carbonell JM, Martín IS, Santos A, Pujol A, Sanz-Moliner JD, Nart J. High-density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: a literature review. Int J Oral Maxillofac Surg. 2014;43(1):75-84. PubMed, CrossRef
- Sun F, Zhou H, Lee J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 2011;7(11):3813-3828. PubMed, CrossRef
- Bouler JM, Pilet P, Gauthier O, Verron E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater. 2017;53:1-12. PubMed, CrossRef
- Bian D, Zhou W, Deng J, Liu Y, Li W, Chu X, Xiu P, Cai H, Kou Y, Jiang B, Zheng Y. Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. Acta Biomater. 2017;64:421-436. PubMed, CrossRef
- Bourgeois B, Laboux O, Obadia L, Gauthier O, Betti E, Aguado E, Daculsi G, Bouler JM. Calcium-deficient apatite: a first in vivo study concerning bone ingrowth. J Biomed Mater Res A. 2003;65(3):402-408. PubMed, CrossRef
- Fujii A, Kuboyama N, Yamane J, Nakao S, Furukawa Y. Effect of organic germanium compound (Ge-132) on experimental osteoporosis in rats. Gen Pharmacol. 1993;24(6):1527-1532. PubMed, CrossRef
- Agnoli C, Sabattini S, Ubiali A, Battisti E, Rossi F, Diana A, Camerino MT, Perfetti S, Ciammaichella L, Stefanello D, Papa M, Zaccone R, Marconato L. A retrospective study on bone metastasis in dogs with advanced-stage solid cancer. J Small Anim Pract. 2023;64(9):561-567. PubMed, CrossRef
- Aksel H, Huang GT. Combined Effects of Vascular Endothelial Growth Factor and Bone Morphogenetic Protein 2 on Odonto/Osteogenic Differentiation of Human Dental Pulp Stem Cells In Vitro. J Endod. 2017;43(6):930-935. PubMed, CrossRef
- Li L, Ruan T, Lyu Y, Wu B.Advances in Effect of Germanium or Germanium Compounds on Animals – A Review. J Biosci Med. 2017;5(7):56-73. CrossRef
- Komatsubara S, Mashiba T, Mori S. Bone fracture and the healing mechanisms. The effect of human parathyroid hormone on fracture healing. Clin Calcium. 2009;19(5):660-666. PubMed
- Andreassen TT, Willick GE, Morley P, Whitfield JF. Treatment with parathyroid hormone hPTH(1-34), hPTH(1-31), and monocyclic hPTH(1-31) enhances fracture strength and callus amount after withdrawal fracture strength and callus mechanical quality continue to increase. Calcif Tissue Int. 2004;74(4):351-356. PubMed, CrossRef
- Hryshchuk VI, Chernyshenko TM, Hornytska OV. The role of protein S in the hemostasis system and the determination of its activity in various pathologies. Med Chem. 2009;11(1):11-17.
This work is licensed under a Creative Commons Attribution 4.0 International License.







