Ukr.Biochem.J. 2025; Volume 97, Issue 6, Nov-Dec, pp. 113-121
doi: https://doi.org/10.15407/ubj97.06.113
The fatty acid composition of cell lipids in walnut bacterial pathogens
M. I. Zarudniak, L. A. Dankevych*, I. P. Tokovenko, V. P. Patyka
D. K. Zabolotny Institute of Microbiology and Virology,
*e-mail: ldankevich@ukr.net
Received: 23 April 2025; Revised: 25 September 2025;
Accepted: 28 November 2025; Available on-line: 23 December 2025
Walnut (Juglans regia) is the most economically important and widespread nut crop in Ukraine. As bacterial diseases of walnut can reduce the yield of this culture by up to 40%, the monitoring of pathogens in a given crop and their identification are extremely important. The fatty acid composition of cell lipids is used in the taxonomy of plant pathogenic bacteria. The objective of this study was to determine the fatty acid composition of cell lipids of Agrobacterium, Xanthomonas, and Pseudomonas collection strains that can actually infect walnut, and those isolated from affected walnut trees in different regions of Ukraine. Fatty acid methyl esters were obtained by two different methods of extraction, with the use of 5% acetyl chloride in methanol at 100°C for 4 h, or 1.5% sulfuric acid in methanol at 80°C for 1 hour. Fatty acid methyl esters were analyzed using gas chromatography–mass spectrometry system. According to the found similarity of the fatty acid composition, the strains isolated from the affected walnut were related to representative collection strains of A. tumefaciens, X. arboricola and P. syringae. It should be noted that during the isolation of fatty acids with the use of 1.5% solution of H2SO4 in methanol, the amount of individual saturated and unsaturated fatty acids in the studied strains decreased and almost all hydroxyl acids, identified as a key taxonomic markers, disappeared in comparison with the using of 5% solution of acetyl chloride in methanol at the hydrolysis stage.
Keywords: Agrobacterium, composition, extraction, fatty acids, phytopathogenic bacteria, Pseudomonas, walnut, Xanthomonas
References:
- Oyaizu H, Komagata K. Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol. 1983;29(1):17-40. CrossRef
- Ikemoto S, Kuraishi H, Komagata K, Azuma R, Suto T, Murooka H. Cellular fatty acid composition in Pseudomonas species. J Gen Appl Microbiol. 1978;24(4):199-213. CrossRef
- Janse JD. Fatty Acid Analysis in the Identification, Taxonomy and Ecology of (Plant Pathogenic) Bacteria. In: Dehne, HW., Adam, G., Diekmann, M., Frahm, J., Mauler-Machnik, A., van Halteren, P. (eds) Diagnosis and Identification of Plant Pathogens. Developments in Plant Pathology, vol 11. Springer, Dordrecht, 1997; 63-70. CrossRef
- Mrozik A, Łabużek S, Piotrowska-Seget Z. Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation. Microbiol Res. 2005;160(2):149-157. PubMed, CrossRef
- Mrozik A, Piotrowska-Seget Z, Łabużek S. Changes in whole cell-derived fatty acids induced by naphthalene in bacteria from genus Pseudomonas. Microbiol Res. 2004;159(1):87-95. PubMed, CrossRef
- 6. Russell NJ, Evans RI, ter Steeg PF, Hellemons J, Verheul A, Abee T. Membranes as a target for stress adaptation. Int J Food Microbiol. 1995;28(2):255-261. PubMed, CrossRef
- O’leary WM. The fatty acids of bacteria. Bacteriol Rev. 1962;26(4):421-447. PubMed, PubMedCentral, CrossRef
- da Costa MS, Albuquerque L, Nobre MF, Wait R. The Identification of Fatty Acids in Bacteria. Methods Microbiol. 2011;38:183-196. CrossRef
- Galushko VP. In: Galushko VP, Beregovoy VK. (Eds.) Economics of world agriculture. Nichlava, LLC CTI “Energy and Electrification”, 2011. 1000 p. (In Ukrainian).
- Gasic K, Prokic A, Ivanovic M, Kuzmanovic N, Obradovic A. Determination of Pseudomonas syringae pathovars originating from stone fruits. Pesticid Phytomed. 2012;27(3):219-229. CrossRef
- Frutos D. Bacterial diseases of walnut and hazelnut and genetic resources. J Plant Pathol. 2010;92(Suppl 1): S79-S85.
- Giovanardi D, Bonneau S, Gironde S, Saux MFL, Manceau C, Stefani E. Morphological and genotypic features of Xanthomonas arboricola pv. juglandis populations from walnut groves in Romagna region, Italy. Eur J Plant Pathol. 2015;145(1):1-16. CrossRef
- Kim HS, Cheon W, Lee Y, Kwon HT, Seo ST, Balaraju K, Jeon Y. Identification and Characterization of Xanthomonas arboricola pv. juglandis Causing Bacterial Blight of Walnuts in Korea. Plant Pathol J. 2021;37(2):137-151. PubMed, PubMedCentral, CrossRef
- Patyka VP, Pasichnyk LA, Gvozdyak RI, Petrychenko VF, Korniychuk OV, Kalinichenko AV, et al. In: PatykaVP. (Ed.) Phytopathogenic bacteria. Research methods. Vol. 2. TOV Vingruk, 2017. 432 p. (In Ukrainian).
- Yang P, Vauterin L, Vancanneyt M, Swings J, Kersters K. Application of fatty acid methyl esters for the taxonomic analysis of the genus Xanthomonas. System Appl Microbiol. 1993;16(1):47-71. CrossRef
- Stead DE. Grouping of Plant-Pathogenic and Some Other Pseudomonas spp. by Using Cellular Fatty Acid Profiles. Int J System Bacteriol. 1992;42(2):281-295. CrossRef
- Mező E, Hartmann-Balogh F, Madarászné Horváth I, Bufa A, Marosvölgyi T, Kocsis B, Makszin L. Effect of Culture Conditions on Fatty Acid Profiles of Bacteria and Lipopolysaccharides of the Genus Pseudomonas-GC-MS Analysis on Ionic Liquid-Based Column. Molecules. 2022;27(20):6930. PubMed, PubMedCentral, CrossRef
- Kropinski AM, Lewis V, Berry D. Effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aeruginosa PAO. J Bacteriol. 1987;169(5):1960-1966. PubMed, PubMedCentral, CrossRef
- Zhang YM, Rock CO. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol. 2008;6(3):222-233. PubMed, CrossRef
- Stead DE, Henessey J, Elphinston JG, Wilson JK. Modern methods for classification of plant pathogenic bacteria including Pseudomonas syringae. In: Rudolph, K., Burr, T.J., Mansfield, J.W., Stead, D., Vivian, A., von Kietzell, J. (eds) Pseudomonas Syringae Pathovars and Related Pathogens. Developments in Plant Pathology, vol 9. Springer, Dordrecht, 1998; 427-434. CrossRef
- Stead DE, Sellwood JE, Wilson J, Viney I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol. 1992;72(4):315-321. CrossRef
- Brenner DJ, Krieg NR, Staley JT. (Eds.). Bergey’s Manual® of Systematic Bacteriology. Springer US, 2005. 1388 p. CrossRef
- Bouzar H. Differential Characterization of Agrobacterium Species Using Carbon-Source Utilization Patterns and Fatty Acid Profiles. Phytopathology. 1993;83(9):733-739. CrossRef
This work is licensed under a Creative Commons Attribution 4.0 International License.







