Ukr.Biochem.J. 2015; Volume 87, Issue 1, Jan-Feb, pp. 83-90


The influence of iron ions on ATP-hydrolases activity of cell membranes of rat colon smooth muscle and kidney

A. A. Kaplia

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;

To elucidate the specific features of the АТР- hydrolases structural resistance in the membrane under the action of the prooxidants: Fe2+ and hydrogen peroxide, and N-ethylmaleimide (NEM)  the colonic smooth muscle (CSM) Na+,K+-AТРase activity was compared with activities of the corresponding Mg2+-АТР-hydrolase and ATP-ases from kidney medullar layer of rats. The inhibition study of the CSM Na+,K+-AТРase by divalent iron shows the decrease of the activity by 30% at 0.1 µM FeSO4 and in the range of 0.1-10 µM – to 45% of residual activity. When comparing with kidney enzyme (represents exclusively α1-isozyme) the CSM Na+,K+-AТРase sensitivity to Fe2+ is reliably higher at its submicromolar concentration. CSM Mg2+-АТРase is much more resistant to iron ions effect, than kidney one. However for two tissues Mg2+-АТРase activi­ty is always more resistant as compared with corresponding Na+,K+-AТРase activity. Against 1 mM EGTA Na+,K+-AТРase and Mg2+-АТРase activities of GMOK and kidneys are equally insensitive to effect of hydrogen peroxide in concentration up to 1 mM. But in the presence of 20 µM FeSO4 in the concentration range of 1 nМ – 1 mM of Н2О2 the Na+,K+-AТРase is inhibited to greater extent, than Mg2+-АТРase activity. NEM sensitivity of the two АТР-hydrolase systems corresponds to prooxidant sensitivity that indicates the distinct importance of SH-groups for their functioning. It is concluded that Na+,K+-AТРase can serve as a marker of membrane sensitivity to oxidation, Mg2+-АТРase is resistant to oxidation and can be considered as criterion of the oxidation resistance when comparing  membrane enzyme complexes, especially in GMOK.

Keywords: , , , , , , ,


  1. Baraboy V. A., Sutkovoy D. A. Oxidative and antioxidative homeostasis in norm and pathology. Kiev: Chernobylinform, 1997. 420 p. (In Russian).
  2.  Lubianova I. P. Modern concepts about the methabolism of iron from the position of the occupational pathologist. Actual Problems of Transport Medicine. 2010;20(2):47-57. (In Russian).
  3. Iron overloading deseases (hemochromatosis). Ed. By A. G. Rummianceva and Yu. N. Tokareva. М: Medpractica Press, 2004. 325 p. (In Russian).
  4. Belous A. M., Konnic A. T. Physiological role of iron. Kiev: Naukova Dumka, 1991. 104 p. (In Russian).
  5. Iron and human disease. Ed. By Randall BnLauffer. CRC Press, Boca Raton Ann Arbor: London – Tokio, 1992. 534 p.
  6. Lingrel JB, Kuntzweiler T. Na+,K(+)-ATPase. J Biol Chem. 1994 Aug 5;269(31):19659-62. Review. PubMed
  7. Kaplia A. A. Structural organization and func­tional role of Na+,K+-ATР-ase isozymes. Kiev: Kiev University Press, 1998. 162 p. (In Russian).
  8. Blanco G. Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin Nephrol. 2005 Sep;25(5):292-303. Review. PubMed
  9. Lingrel J, Moseley A, Dostanic I, Cougnon M, He S, James P, Woo A, O’Connor K, Neumann J. Functional roles of the alpha isoforms of the Na,K-ATPase. Ann N Y Acad Sci. 2003 Apr;986:354-9. PubMed
  10. Kaplia AA, Mishchuk DO. Na+,K+-ATPase isoenzymes of excitable tissues in pathological states. Ukr Biokhim Zhurn. 2001 Sep-Oct;73(5):17-22. Review. Russian. PubMed
  11. Kaplia AA, Khizhniak SV, Kudriavtseva AG, Papageorgakopulu N, Osinskiy DS. Na+,K+-ATPase and Ca2+-ATPase isozymes in malignant neoplasms. Ukr Biokhim Zhurn. 2006 Jan-Feb;78(1):29-42. Review. Russian. PubMed
  12. Kaplia AA, Morozova VS. Na+,K(+)-ATPase activity in polarized cells. Ukr Biokhim Zhurn (1999). 2010 Jan-Feb;82(1):5-20. Review. Russian. PubMed
  13. Knowles AF, Isler RE, Reece JF. The common occurrence of ATP diphosphohydrolase in mammalian plasma membranes. Biochim Biophys Acta. 1983 May 26;731(1):88-96. PubMed
  14. Knowles AF, Chiang WC. Enzymatic and transcriptional regulation of human ecto-ATPase/E-NTPDase 2. Arch Biochem Biophys. 2003 Oct 15;418(2):217-27. PubMed
  15. Boldyrev AA, Bulygina ER, Kramarenko GG. Is Na,K-ATPase the target of oxidative stress?. Biull Eksp Biol Med. 1996 Mar;121(3):275-8. Russian. PubMed
  16. Kako K, Kato M, Matsuoka T, Mustapha A. Depression of membrane-bound Na+-K+-ATPase activity induced by free radicals and by ischemia of kidney. Am J Physiol. 1988 Feb;254(2 Pt 1):C330-7. PubMed
  17. Rajasekaran AK, Rajasekaran SA. Role of Na-K-ATPase in the assembly of tight junctions. Am J Physiol Renal Physiol. 2003 Sep;285(3):F388-96. PubMed
  18. Kaplia AA. The heterogeneity of the Na+, K(+)-ATPase ouabain sensitivity in microsomal membranes of rat colon smooth muscles. Ukr Biokhim Zhurn. 2011 Sep-Oct;83(5):89-93. Russian. PubMed
  19. Burke EP, Sanders KM, Horowitz B. Sodium pump isozymes are differentially expressed in electrically dissimilar regions of colonic circular smooth muscle. Proc Natl Acad Sci USA. 1991 Mar 15;88(6):2370-4. PubMed, PubMedCentral
  20. Xie Z, Jack-Hays M, Wang Y, Periyasamy SM, Blanco G, Huang WH, Askari A. Different oxidant sensitivities of the alpha1 and alpha2 isoforms of Na+,K+-ATPase expressed in baculovirus-infected insect cells. Biochem Biophys Res Commun. 1995;207(1):155-159.
  21. Cadman E, Bostwick JR, Eichberg J. Determination of protein by a modified Lowry procedure in the presence of some commonly used detergents. Anal Biochem. 1979 Jul 1;96(1):21-3. PubMed
  22. Kaplia AA, Kudriavtseva AG, Kizhniak SV, Osinskiy DS, Demin EN. Na+,K+ -ATPase activity characteristics in human colon adenocarcinoma. Ukr Biokhim Zhurn. 2007 Jul-Aug;79(4):90-6. Russian. PubMed
  23. Kaplya O, Khyzhnyak S, Kudryavceva A, Dyomin E, Osynski D. Na+,K+-ATPase functioning in human colorectal adenocarcinomas depending on tumor differentiation. Annales Universitatis Mariae-Sklodowska (Lublin, Polonia). Sectio DDD. 2008;21(1):303-305.
  24. Chen PS, Toribara TY, Warner H. Microdetermination of phosphorus. Anal Chem. 1956;28(11):1756-1758.
  25. Huang WH, Wang Y, Askari A, Zolotarjova N, Ganjeizadeh M. Different sensitivities of the Na+/K(+)-ATPase isoforms to oxidants. Biochim Biophys Acta. 1994 Feb 23;1190(1):108-14. PubMed
  26. Huang WH, Wang Y, Askari A. (Na+ + K+)-ATPase: inactivation and degradation induced by oxygen radicals. Int J Biochem. 1992 Apr;24(4):621-6. PubMed
  27. Goldshleger R, Bar Shimon M, Or E, Karlish SJ. Metal-catalysed cleavage of Na,K-ATPase as a tool for study of structure-function relations. Acta Physiol Scand Suppl. 1998 Aug;643:89-97. Review. PubMed
  28. Goldshleger R, Patchornik G, Shimon MB, Tal DM, Post RL, Karlish SJ. Structural organization and energy transduction mechanism of Na+,K+-ATPase studied with transition metal-catalyzed oxidative cleavage. J Bioenerg Biomembr. 2001 Oct;33(5):387-99. Review. PubMed
  29. Krstić D, Krinulović K, Vasić V. Inhibition of Na+/K(+)-ATPase and Mg(2+)-ATPase by metal ions and prevention and recovery of inhibited activities by chelators. J Enzyme Inhib Med Chem. 2005 Oct;20(5):469-76. PubMed
  30. Floyd RV, Wray S, Quenby S, Martín-Vasallo P, Mobasheri A. Expression and distribution of Na, K-ATPase isoforms in the human uterus. Reprod Sci. 2010 Apr;17(4):366-76. PubMed, CrossRef
  31. Shelly DA, He S, Moseley A, Weber C, Stegemeyer M, Lynch RM, Lingrel J, Paul RJ. Na(+) pump alpha 2-isoform specifically couples to contractility in vascular smooth muscle: evidence from gene-targeted neonatal mice. Am J Physiol Cell Physiol. 2004 Apr;286(4):C813-20. PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.