Ukr.Biochem.J. 2025; Volume 97, Issue 5, Sep-Oct, pp. 116-129

doi: https://doi.org/10.15407/ubj97.05.116

Scientific achievements of the Department of Molecular Biology in understanding stress-dependent mechanisms of glioma growth

O. H. Minchenko*, Y. M. Viletska, M. Y. Sliusar, O. O. Khita

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine,
Department of Molecular Biology, Kyiv;
*e-mail: ominchenko@yahoo.com

Received: 09 July 2025; Revised: 25 July 2025;
Accepted: 30 October 2025; Available on-line: 02 December 2025

Since 2005, the Department of Molecular Biology has initiated research aimed at solving key problems in biochemistry and molecular biology, with an emphasis on elucidating the molecular basis of malignant tumor growth and the mechanisms of hypoxic regulation, the role of alternative splicing in the mechanisms of gene expression regulation, as well as the fundamental importance of endoplasmic reticulum stress in maintaining homeostasis and the development of pathological conditions, in particular, the growth of glioblastomas, the most malignant brain tumors that are difficult to treat. It has been shown that the expression of different 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB), key glycolysis regulators, is exacerbated in various malignant tumors and that PFKFB4 is a marker of tumor growth. It has been established that the expression level of PFKFB4 is controlled under hypoxia by a HIF-dependent mechanism, and a HIF-specific sequence has been identified in the promoter, the mutation of which completely removes hypoxic regulation of the PFKFB4 gene. Numerous splice variants of different PFKFB and VEGFA genes have also been identified. It has been established that inhibition of endoplasmic reticulum stress, its ERN1 signaling pathway, reduces the proliferation of glioblastoma cells by changing the expression levels of oncogenes, tumor suppressors, mitochondrial enzymes, as well as insulin and glucocorticoid receptors and their dependent proteins. An important role of ERN1 protein kinase activity in regulating the expression of various genes has been revealed, and its inhibition has been shown to lead to increased invasiveness of glioblastoma cells upon ERN1 knockdown. Attention is focused on studying non-canonical mechanisms of hypoxic gene expression regulation and its dependence on endoplasmic reticulum stress.

Keywords: , , , ,


References:

  1. Minchenko A, Leshchinsky I, Opentanova I, Sang N, Srinivas V, Armstead V, Caro J. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem. 2002;277(8):6183-6187. PubMed, PubMedCentral, CrossRef
  2. Minchenko O, Opentanova I, Caro J. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1-4) expression in vivo. FEBS Lett. 2003;554(3):264-270. PubMed, CrossRef
  3. Minchenko OH, Ogura T, Opentanova IL, Minchenko DO, Ochiai A, Caro J, Komisarenko SV, Esumi H. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family overexpression in human lung tumor. Ukr Biokhim Zhurn. 2005;77(6):46-50. PubMed
  4. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8(12):967-975. PubMed, PubMedCentral, CrossRef
  5. Minchenko OH, Ochiai A, Opentanova IL, Ogura T, Minchenko DO, Caro J, Komisarenko SV, Esumi H. Overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 in the human breast and colon malignant tumors. Biochimie. 2005;87(11):1005-1010. PubMed, CrossRef
  6. Minchenko A, Caro J. Regulation of endothelin-1 gene expression in human microvascular endothelial cells by hypoxia and cobalt: role of hypoxia responsive element. Mol Cell Biochem. 2000;208(1-2):53-62. PubMed, CrossRef
  7. Bobarykina AY, Minchenko DO, Opentanova IL, Moenner M, Caro J, Esumi H, Minchenko OH. Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers. Acta Biochim Pol. 2006;53(4):789-799. PubMed, CrossRef
  8. Minchenko OH, Tsuchihara K, Minchenko DO, Bikfalvi A, Esumi H. Mechanisms of regulation of PFKFB expression in pancreatic and gastric cancer cells. World J Gastroenterol. 2014;20(38):13705-13717. PubMed, PubMedCentral, CrossRef
  9. Bobarykina AIu, Minchenko DO, Opentanova IL, Kovtun OO, Komisarenko SV, Esumi H, Minchenko OH. HIF-1alpha, HIF-2alpha and VHL mRNA expression in different cell lines during hypoxia. Ukr Biokhim Zhurn. 2006;78(2):62-72. (In Ukrainian). PubMed
  10. Ryan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, Johnson RS. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res. 2000;60(15):4010-4015. PubMed
  11. Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, Brock E, Siow D, Wattenberg B, Telang S, Chesney J. Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem. 2009;284(36):24223-24232. PubMed, PubMedCentral, CrossRef
  12. Lypova N, Telang S, Chesney J, Imbert-Fernandez Y. Increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity in response to EGFR signaling contributes to non-small cell lung cancer cell survival. J Biol Chem. 2019;294(27):10530-10543. PubMed, PubMedCentral, CrossRef
  13. Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J. 2004;381(Pt 3):561-579. PubMed, PubMedCentral, CrossRef
  14. Chesney J, Clark J, Klarer AC, Imbert-Fernandez Y, Lane AN, Telang S. Fructose-2,6-bisphosphate synthesis by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is required for the glycolytic response to hypoxia and tumor growth. Oncotarget. 2014;5(16):6670-6686. PubMed, PubMedCentral, CrossRef
  15. Brahimi-Horn MC, Chiche J, Pouysségur J. Hypoxia and cancer. J Mol Med (Berl). 2007;85(12):1301-1307. PubMed, CrossRef
  16. Minchenko OH, Opentanova IL, Ogura T, Minchenko DO, Komisarenko SV, Caro J, Esumi H. Expression and hypoxia-responsiveness of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 in mammary gland malignant cell lines. Acta Biochim Pol. 2005;52(4):881-888. PubMed, CrossRef
  17. Minchenko O, Opentanova I, Minchenko D, Ogura T, Esumi H. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 gene via hypoxia-inducible factor-1alpha activation. FEBS Lett. 2004;576(1-2):14-20. PubMed, CrossRef
  18. Minchenko OH, Ogura T, Opentanova IL, Minchenko DO, Esumi H. Splice isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4: expression and hypoxic regulation. Mol Cell Biochem. 2005;280(1-2):227-234. PubMed, CrossRef
  19. Mykhalchenko VG, Minchenko DO, Tsuchihara K, Moenner M, Komisarenko SV, Bikfalvi A, Esumi H, Minchenko OH. Expression of mouse 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 mRNA alternative splice variants in hypoxia. Ukr Biokhim Zhurn. 2008;80(1):19-25. PubMed
  20. Minchenko DO, Mykhalchenko VG, Tsuchihara K, Kanehara S, Yavorovsky OP, Zavgorodny IV, Paustovsky YO, Komisarenko SV, Esumi H, Minchenko OH. Alternative splice variants of rat 6-phosphofructo-2-kinase/ fructose-2,6-bisphosphatase-4 mRNA. Ukr Biokhim Zhurn. 2008;80(4):66-73. PubMed
  21. Minchenko DO, Tsuchihara K, Komisarenko SV, Moenner M, Bikfalvi A, Esumi H, Minchenko OH. Unique alternative splice variants of mouse PFKFB-3 mRNA: tissue specific expression. Sci Bull Nat Bohomoletz Med Univ. 2008;(1):22-31.
  22. Minchenko DO, Bozhko IV, Lypova NM, Mykhalchenko VG, Minchenko OH. Unique alternative splice variants of mouse and human 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-2 mRNA. Studia Biologica. 2010;4(2):13-24. (In Ukrainian). CrossRef
  23. Minchenko DO, Bobarykina AY, Kundieva AV, Lypova NM, Bozhko IV, Ratushna OO, Minchenko OH. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase genes: structural organization, expression and regulation of the expression. Studia Biologica. 2009; 3(3): 123-140. (In Ukrainian). CrossRef
  24. Lypova NM, Minchenko DO, Ratushna OO, Bozhko IV, Tsuchihara K, Esumi H, Minchenko OH. Expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-2 mRNA and its alternative splice variants in rats with experimental diabetes mellitus. Ukr Biokhim Zhurn. 2010;82(1):90-99. (In Ukrainian). PubMed
  25. Mykhalchenko VG, Tsuchihara K, Minchenko DO, Esumi H, Prystupiuk OM, Minchenko OH. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase mRNA expression in streptozotocin-diabetic rats. Biopolym Cell. 2008;24(3):260-266. CrossRef
  26. Obrosova IG, Minchenko AG, Marinescu V, Fathallah L, Kennedy A, Stockert CM, Frank RN, Stevens MJ. Antioxidants attenuate early up regulation of retinal vascular endothelial growth factor in streptozotocin-diabetic rats. Diabetologia. 2001;44(9):1102-1110. PubMed, CrossRef
  27. Minchenko DO, Bobarykina AY, Ratushna OO, Marunych RY, Tsuchihara K, Moenner M, Caro J, Esumi H, Minchenko OH. Dominant-negative constructs of human 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and -4: effect on the expression of endogenous 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase mRNA. Biotechnology. 2008;(4):49-56.
  28. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8(9):705-713. PubMed, CrossRef
  29. Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, Papaioannou A, Püschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Muñoz-Pinedo C, Rehm M, Chevet E, Samali A. Endoplasmic reticulum stress signalling – from basic mechanisms to clinical applications. FEBS J. 2019;286(2):241-278. PubMed, PubMedCentral, CrossRef
  30. Minchenko OH, Kharkova AP, Bakalets TV, Kryvdiuk IV. Endoplasmic reticulum stress, its sensor and signalling systems and the role in regulation of gene expression at malignant tumor growth and hypoxia. Ukr Biochem J. 2013;85(5):5-16. (In Ukrainian). CrossRef
  31. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21(8):421-438. PubMed, PubMedCentral, CrossRef
  32. Doultsinos D, Avril T, Lhomond S, Dejeans N, Guédat P, Chevet E. Control of the Unfolded Protein Response in Health and Disease. SLAS Discov. 2017;22(7):787-800. PubMed, CrossRef
  33. Warburg O. On respiratory impairment in cancer cells. Science. 1956;124(3215):269-270. PubMed, CrossRef
  34. Batie M, Rocha S. Gene transcription and chromatin regulation in hypoxia. Biochem Soc Trans. 2020;48(3):1121-1128. PubMed, PubMedCentral, CrossRef
  35. Minchenko OH, Kubaichuk KI, Minchenko DO, Kovalevska OV, Kulinich AO, Lypova N.M. Molecular mechanisms of ERN1-mediated angiogenesis. Int J Physiol Pathophysiol. 2014;5(1):1-22. CrossRef
  36. Pelizzari-Raymundo D, Maltret V, Nivet M, Pineau R, Papaioannou A, Zhou X, Caradec F, Martin S, Le Gallo M, Avril T, Chevet E, Lafont E. IRE1 RNase controls CD95-mediated cell death. EMBO Rep. 2024;25(4):1792-1813. PubMed, PubMedCentral, CrossRef
  37. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell. 2007;27(1):53-66. PubMed, CrossRef
  38. Minchenko OH, Tsymbal DO, Khita OO, Minchenko DO. Inhibition of ERN1 signaling is important for the suppression of tumor growth. Clin Cancer Drugs. 2021;8(1):27-38. CrossRef
  39. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol. 2009;186(3):323-331. PubMed, PubMedCentral, CrossRef
  40. Maurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 2014;39(5):245-254. PubMed, CrossRef
  41. Auf G, Jabouille A, Delugin M, Guérit S, Pineau R, North S, Platonova N, Maitre M, Favereaux A, Vajkoczy P, Seno M, Bikfalvi A, Minchenko D, Minchenko O, Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor. BMC Cancer. 2013;13:597. PubMed, PubMedCentral, CrossRef
  42. Minchenko OH, Tsymbal DO, Minchenko DO, Moenner M, Kovalevska OV, Lypova NM. Inhibition of kinase and endoribonuclease activity of ERN1/IRE1α affects expression of proliferation-related genes in U87 glioma cells. Endoplasm Reticul Stress Dis. 2015;2(1):18-29. CrossRef
  43. Minchenko DO, Tsymbal DO, Riabovol OO, Viletska YM, Lahanovska YO, Sliusar MY, Bezrodnyi BH, Minchenko OH. Hypoxic regulation of EDN1, EDNRA, EDNRB, and ECE1 gene expressions in ERN1 knockdown U87 glioma cells. Endocr Regul. 2019;53(4):250-262. PubMed, CrossRef
  44. Minchenko DO, Khita OO, Tsymbal DO, Danilovskyi SV, Rudnytska OV, Halkin OV, Kryvdiuk IV, Smeshkova MV, Yakymchuk MM, Bezrodnyi BH, Minchenko OH. Expression of IDE and PITRM1 genes in ERN1 knockdown U87 glioma cells: effect of hypoxia and glucose deprivation. Endocr Regul. 2020;54(3):183-195. PubMed, CrossRef
  45. Tian Y, Jing G, Zhang M. Insulin-degrading enzyme: Roles and pathways in ameliorating cognitive impairment associated with Alzheimer’s disease and diabetes. Ageing Res Rev. 2023;90:101999. PubMed, CrossRef
  46. Feng YY, Hao JR, Zhang YJ, Qiu TT, Zhang ML, Qiao W, Wu JJ, Qiu P, Xu CF, Zhang YL, Du CY, Pan Z, Chang YS. Krüppel-like factor 9 alleviates Alzheimer’s disease via IDE-mediated Aβ degradation. Acta Pharmacol Sin. 2025;46(6):1556-1566. PubMed, PubMedCentral, CrossRef
  47. Brunetti D, Catania A, Viscomi C, Deleidi M, Bindoff LA, Ghezzi D, Zeviani M. Role of PITRM1 in Mitochondrial Dysfunction and Neurodegeneration. Biomedicines. 2021;9(7):833. PubMed, PubMedCentral, CrossRef
  48. Minchenko OH, Sliusar MY, Khita OO, Viletska YM, Luzina OY, Danilovskyi SV, Minchenko DO. Endoplasmic reticulum stress-dependent regulation of the expression of serine hydroxymethyltransferase 2 in glioblastoma cells. Endocr Regul. 2024;58(1):144-152. PubMed, CrossRef
  49. Minchenko OH, Khita OO, Krasnytska DA, Viletska YM, Rudnytska OV, Hnatiuk OS, Minchenko DO. Inhibition of ERN1 affects the expression of TGIF1 and other homeobox gene expressions in U87MG glioblastoma cells. Arch Biochem Biophys. 2024;758:110073. PubMed, CrossRef
  50. Minchenko OH, Sliusar MY, Khikhlo YP, Halkin OV, Viletska YM, Khita OO, Minchenko DO. Knockdown of ERN1 disturbs the expression of phosphoserine aminotransferase 1 and related genes in glioblastoma cells. Arch Biochem Biophys. 2024;759:110104. PubMed, CrossRef
  51. Minchenko OH, Abramchuk AI, Khita OO, Sliusar MY, Viletska YM, Minchenko DO. Endoplasmic reticulum stress-dependent regulation of carboxypeptidase E expression in glioblastoma cells. Endocr Regul. 2024;58(1):206-214. PubMed, CrossRef
  52. Minchenko OH, Hrebennykova VO, Viletska YM, Hnatiuk OS, Sliusar MY, Kozynkevych HE, Minchenko DO. The ERN1 signaling pathway of unfolded protein controls the expression of EDEM1 and its hypoxic regulation in glioblastoma cells. Endocr Regul. 2025;59(1):1-9. PubMed, CrossRef
  53. 53. Auf G, Jabouille A, Guérit S, Pineau R, Delugin M, Bouchecareilh M, Magnin N, Favereaux A, Maitre M, Gaiser T, von Deimling A, Czabanka M, Vajkoczy P, Chevet E, Bikfalvi A, Moenner M. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA. 2010;107(35):15553-15558.
    PubMed, PubMedCentral, CrossRef
  54. Danilovskyi SV, Minchenko DO, Moliavko OS, Kovalevska OV, Karbovskyi LL, Minchenko OH. ERN1 knockdown modifies the hypoxic regulation of TP53, MDM2, USP7 and PERP gene expressions in U87 glioma cells. Ukr Biochem J. 2014;86(4):90-102. PubMed, CrossRef
  55. Minchenko DO, Danilovskyi SV, Kryvdiuk IV, Bakalets TV, Lypova NM, Karbovskyi LL, Minchenko OH. Inhibition of ERN1 modifies the hypoxic regulation of the expression of TP53-related genes in U87 glioma cells. Endoplasm Reticul Stress Dis. 2014;1(1) 18-26. CrossRef
  56. Minchenko DO, Karbovskyi LL, Danilovskyi SV, Moenner M, Minchenko OH. Effect of hypoxia and glutamine or glucose deprivation on the expression of retinoblastoma and retinoblastoma-related genes in ERN1 knockdown glioma U87 cell line. Am J Mol Biol. 2012;2(1):21-31. CrossRef
  57. Minchenko OH, Tsymbal DO, Minchenko DO. IRE-1alpha signaling as a key target for suppression of tumor growth. Single Cell Biol. 2015;4(3):118. CrossRef
  58. Le Reste PJ, Pineau R, Voutetakis K, Samal J, Jégou G, Lhomond S, Gorman AM, Samali A, Patterson JB, Zeng Q, Pandit A, Aubry M, Soriano N, Etcheverry A, Chatziioannou A, Mosser J, Avril T, Chevet E. Local intracerebral inhibition of IRE1 by MKC8866 sensitizes glioblastoma to irradiation/chemotherapy in vivo. Cancer Lett. 2020;494:73-83. PubMed, CrossRef
  59. Raymundo DP, Doultsinos D, Guillory X, Carlesso A, Eriksson LA, Chevet E. Pharmacological Targeting of IRE1 in Cancer. Trends Cancer. 2020;6(12):1018-1030. PubMed, CrossRef
  60. Pelizzari-Raymundo D, Doultsinos D, Pineau R, Sauzay C, Koutsandreas T, Langlais T, Carlesso A, Gkotsi E, Negroni L, Avril T, Chatziioannou A, Chevet E, Eriksson LA, Guillory X. A novel IRE1 kinase inhibitor for adjuvant glioblastoma treatment. iScience. 2023;26(5):106687. PubMed, PubMedCentral, CrossRef
  61. Logue SE, McGrath EP, Cleary P, Greene S, Mnich K, Almanza A, Chevet E, Dwyer RM, Oommen A, Legembre P, Godey F, Madden EC, Leuzzi B, Obacz J, Zeng Q, Patterson JB, Jäger R, Gorman AM, Samali A. Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nat Commun. 2018;9(1):3267. PubMed, PubMedCentral, CrossRef
  62. Minchenko A, Bauer T, Salceda S, Caro J. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest. 1994;71(3):374-379. PubMed
  63. Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R, Nalbantoglu J, Kaufman RJ, Chevet E, Bikfalvi A, Moenner M. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res. 2007;67(14):6700-6707. PubMed, CrossRef
  64. Minchenko DО, Kubaichuk KI, Ratushna OO, Komisarenko SV, Minchenko OH. The vascular endothelial growth factor genes expression in glioma U87 cells is dependent from ERN1 signaling enzyme function. Adv Biol Chem. 2012;2(2):198-206. CrossRef
  65. Hose D, Moreaux J, Meissner T, Seckinger A, Goldschmidt H, Benner A, Mahtouk K, Hillengass J, Rème T, De Vos J, Hundemer M, Condomines M, Bertsch U, Rossi JF, Jauch A, Klein B, Möhler T. Induction of angiogenesis by normal and malignant plasma cells. Blood. 2009;114(1):128-143. PubMed, CrossRef
  66. Cao J, Yee D. Disrupting Insulin and IGF Receptor Function in Cancer. Int J Mol Sci. 2021;22(2):555. PubMed, PubMedCentral, CrossRef
  67. Wang P, Mak VC, Cheung LW. Drugging IGF-1R in cancer: New insights and emerging opportunities. Genes Dis. 2022;10(1):199-211. PubMed, PubMedCentral, CrossRef
  68. Takahashi SI, Perks CM. Editorial: The Role of the IGF/Insulin-IGFBP Axis in Normal Physiology and Disease. Front Endocrinol (Lausanne). 2022;13:892140. PubMed, PubMedCentral, CrossRef
  69. Liu Y, Shen S, Yan Z, Yan L, Ding H, Wang A, Xu Q, Sun L, Yuan Y. Expression characteristics and their functional role of IGFBP gene family in pan-cancer. BMC Cancer. 2023;23(1):371. PubMed, PubMedCentral, CrossRef
  70. Minchenko DO, Kharkova AP, Halkin OV, Karbovskyi LL, Minchenko OH. Effect of hypoxia on the expression of genes encoding insulin-like growth factors and some related proteins in U87 glioma cells without IRE1 function. Endocr Regul. 2016;50(2):43-54.
    PubMed, CrossRef
  71. Minchenko DO, Kharkova AP, Karbovskyi LL, Minchenko OH. Expression of insulin-like growth factor binding protein genes and its hypoxic regulation in U87 glioma cells depends on ERN1 mediated signaling pathway of endoplasmic reticulum stress. Endocr Regul. 2015;49(2):73-83. PubMed, CrossRef
  72. Minchenko OH, Kharkova AP, Minchenko DO, Karbovskyi LL. Effect of hypoxia on the expression of genes that encode some IGFBP and CCN proteins in U87 glioma cells depends on IRE1 signaling. Ukr Biochem J. 2015;87(6):52-63. CrossRef
  73. Sliusar MY, Minchenko DO, Khita OO, Tsymbal DO, Viletska YM, Luzina OY, Danilovskyi SV, Ratushna OO, Minchenko OH. Hypoxia controls the expression of genes responsible for serine synthesis in U87MG cells on ERN1-dependent manner. Endocr Regul. 2023;57(1):252-261. PubMed, CrossRef
  74. Minchenko OH, Tsymbal DO, Minchenko DO, Kovalevska OV, Karbovskyi LL, Bikfalvi A. Inhibition of ERN1 signaling enzyme affects hypoxic regulation of the expression of E2F8, EPAS1, HOXC6, ATF3, TBX3 and FOXF1 genes in U87 glioma cells. Ukr Biochem J. 2015;87(2):76-87. CrossRef
  75. Minchenko OH, Abramchuk AI, Khikhlo YP, Sliusar MY, Halkin OV, Luzina OY, Danilovsryi SV, Viletska YM, Minchenko DO. Hydrocortisone interacts with endoplasmic reticulum stress in hypoxic regulation of phosphoserine aminotransferase 1 gene expression differently in normal human astrocytes and glioblastoma cells. Endocr Regul. 2025;59(1):48-56. PubMed, CrossRef
  76. Miura K, Katsuki R, Yoshida S, Ohta R, Tamura T. Identification of EGF Receptor and Thrombospondin-1 as Endogenous Targets of ER-Associated Degradation Enhancer EDEM1 in HeLa Cells. Int J Mol Sci. 2023;24(15):12171. PubMed, PubMedCentral, CrossRef
  77. Flintoaca Alexandru PR, Chiritoiu GN, Lixandru D, Zurac S, Ionescu-Targoviste C, Petrescu SM. EDEM1 regulates the insulin mRNA level by inhibiting the endoplasmic reticulum stress-induced IRE1/JNK/c-Jun pathway. iScience. 2023;26(10):107956. PubMed, PubMedCentral, CrossRef
  78. Fan S, Gao X, Chen P, Li X. Carboxypeptidase E-ΔN promotes migration, invasiveness, and epithelial-mesenchymal transition of human osteosarcoma cells via the Wnt-β-catenin pathway. Biochem Cell Biol. 2019;97(4):446-453. PubMed, CrossRef
  79. Kuo IY, Liu D, Lai WW, Wang YC, Loh YP. Carboxypeptidase E mRNA: Overexpression predicts recurrence and death in lung adenocarcinoma cancer patients. Cancer Biomark. 2022;33(3):369-377. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.