Ukr.Biochem.J. 2014; Volume 86, Issue 3, May-Jun, pp. 49-60

doi: http://dx.doi.org/10.15407/ubj86.03.049

Complexes of cobalt (II, III) with derivatives of dithiocarbamic acid – effectors of peptidases of Bacillus thuringiensis and α-L-Rhamnozidase of Eupenicillium erubescens and Cryptococcus albidus

L. D. Varbanets1, E. V. Matseliukh1, I. I. Seifullina2,
N. V. Khitrich2, N. A. Nidialkova1, E. V. Gudzenko1

1D. K. Zabolotny Institute of Microbiology and Virology,
National Academy of Sciences of Ukraine, Kyiv;
2I. I. Mechnikov Оdеssa National University, Ukraine;
e-mail: varbanets@serv.imv.kiev.ua

The influence of  cobalt (II, III) coordinative compounds with derivatives of dithiocarbamic acid on Bacillus thuringiensis IMV B-7324 peptidases with elastase and fibrinolytic activi­ty and Eupenicillium erubescens and Cryptococcus albidus α-L-rhamnosidases have been studied. Tested coordinative compounds of cobalt (II, III) on the basis of their composition and structure are presented by 6 groups: 1) tetrachlorocobaltates (II) of 3,6-di(R,R′)-iminio-1,2,4,5-tetratiane – (RR′)2Ditt[CoCl4]; 2) tetrabromocobaltates (II) of 3,6-di(R,R′)-iminio-1,2,4,5-tetratiane – (RR′)2Ditt[CoBr4]; 3) isothiocyanates of tetra((R,R′)-dithiocarbamatoisothiocyanate)cobalt (II) – [Co(RR′Ditc)4](NCS)2]; 4) dithiocarbamates of cobalt (II) – [Co(S2CNRR′)2]; 5) dithiocarbamates of cobalt (III) – [Co(S2CNRR′)3]; 6) molecular complexes of dithiocarbamates of cobalt (III) with iodine­ – [Co(S2CNRR′)3]∙2I2. These groups (1-6) are combined by the presence of the same complexing agent (cobalt) and a fragment S2CNRR′ in their mole­cules. Investigated complexes differ by a charge of intrinsic coordination sphere: anionic (1-2), cationic (3) and neutral (4-6). The nature of substituents at nitrogen atoms varies in each group of complexes. It is stated that the studied coordination compounds render both activating and inhibiting effect on enzyme activity, depending on composition, structure, charge of complex, coordination number of complex former and also on the enzyme and strain producer. Maximum effect is achieved by activating of peptidases B. thuringiensis IMV B-7324 with elastase and fibrinolytic activity. So, in order to improve the catalytic properties of peptidase 1, depending on the type of exhibited activity, it is possible to recommend the following compounds: for elastase – coordinately nonsaturated complexes of cobalt (II) (1-4) containing­ short aliphatic or alicyclic substituents at atoms of nitrogen and increasing activity by 17-100% at an average; for fibrinolytic – neutral dithio­carbamates of cobalt (II, III) (4-5) (by 29-199%). For increasing the fibrinolytic activity of peptidase it is better to use dibenzyl- or ethylphenyldithiocarbamates of cobalt (III), which increase activity by 15-40% at an average. The same complexes, and also compound {(CH2)6}2Ditt[CoCl4] make an activating impact on α-L-rhamnosidase C. albidus (by 10-20%).

Keywords: , , , , , ,


References:

  1. Varbanets L. D., Mаtselyukh Е. V. Proteolytic enzymes of microorganisms. K.: 2008. 107 p.
  2. Matselyukh О. V., Nidialkova N. A., Varbanets L. D. Purification and physicochemical properties of Bacillus thuringiensis ІМВ В-7324 peptidase with elastolytic and fibrinolytic activity. Ukr Biokhim. Zhurn. 2012 Nov-Dec;84(6):25–36. Ukrainian. PubMed
  3. Gudzenko O. V., Varbanets L. D. Microbial α-l-rhamnosidases: producers, properties and practical use. Biotechnology. 2012;5(6):9–26.
  4. Gudzenko O.V., Varbanets L.D. Purification and physico-chemical properties of Eupenicillium erubescens alpha-L-rhamnosidase. Microbiol. Zhurn. 2012 Mar-Apr;74(2):14–21. PubMed
  5. Gudzenko O.V., Varbanets L.D. Purification and physico-chemical properties of Cryptococcus albidus 1001 α-L- rhamnosidase. Microbiol. Zhurn. 2012 Nov-Dec;74(6):16–23. PubMed
  6. Varbanets L. D., Mаtselyukh Е. V., Gudzenko Е. V., Bоrzоvа N. V., Sеifullina I. I., Khitrich G. N. Coordinative compounds of zinc with n-substituted thiоcаrbаmоil-N′-pentаmethylеnsulfenаmides – activity mоdifiers of еnzymes of proteolytic and glycolytic action. Ukr Biokhim Zhurn. 2011 May-Jun;83(3):25-36. PubMed
  7. Gölcü A. Transition metal complexes of propranolol dithiocarbamate: synthesis, characterization, analytical properties and biological activity. Transit. Metal Chem. 2006;31(3):405–412. CrossRef
  8. Mohammad A, Varshney C, Nami SA. Synthesis, characterization and antifungal activities of 3d-transition metal complexes of 1-acetylpiperazinyldithiocarbamate, M(acpdtc)2. Spectrochim Acta A Mol Biomol Spectrosc. 2009 Jul;73(1):20-4. Epub 2009 Jan 24.
    PubMed, CrossRef
  9. Mamba SM, Mishra AK, Mamba BB, Njobeh PB, Dutton MF, Fosso-Kankeu E. Spectral, thermal and in vitro antimicrobial studies of cyclohexylamine-N-dithiocarbamate transition metal complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2010 Oct 15;77(3):579-87. Epub 2010 Jun 11.
    PubMed, CrossRef
  10. Matselyukh O. V. Obtaining of mutants of Вacillus sp. with enhanced elastase production. Biotechnology. 2010;3(2):42–47.
  11. Nidialkova N. A., Matselyukh O. V., Varbanets L. D. Optimization of the medium for the synthesis of the Bacillus thuringiensis ІМВ В-7324 fibrinolytic peptidase. Biotechnology. 2012;5(4):74–81.
  12. Matselyukh O. V., Nidialkova N. A., Varbanets L. D. Characteristics of growth and elastase production by mutant of Bacillus sp. 27-88ELS+. Biotechnology. 2011;4(3):43–50.
  13. Matselyukh О. V., Nidialkova N. A., Varbanets L. D. Purification and physicochemical properties of Bacillus thuringiensis ІМВ В-7324 peptidase with elastolytic and fibrinolytic activity. Ukr Biokhim Zhurn. 2012 Nov-Dec;84(6):25–36. Ukrainian. PubMed
  14. Nidialkova N.A., Matselyukh O.V., Varbanets L.D. Isolation of Bacillus thuringiensis IMV B-7324 fibrinolytic peptidase. Microbiol. Zhurn. 2012 Sep-Oct;74(5):9–15. Ukrainian. PubMed
  15. Varbanets LD, Matselyukh ОV, Nidyalkova NА, Аvdiyuk ЕV, Gudzenko АV, Seifullina II, Маsаnоvets GN, Khitrich NV. The coordination compounds of cobalt (II, III) with dithiocarbamic acid derivatives — modificators of hydrolytic enzymes activity. Biotechnol. Acta. 2013;6(1):73–80.
  16. Gudzenko E.V., Borzova N.V., Varbanets L.D. Optimization of cultivation conditions of α-L-rhamnosidases producers – representatives of different taxonomic groups of microorganisms. Microbiol. Zhurn. 2011 May-Jun;73(3):46–53. Ukrainian. PubMed
  17. Gudzenko EV, Varbanets LD. Purification and physico-chemical properties of Eupenicillium erubescens alpha-L-rhamnosidase. Microbiol. Zhurn. 2012 Mar-Apr;74(2):14–21. Russian. PubMed
  18. Gudzenko EV, Varbanets LD. Purification and physico-chemical properties of Cryptococcus albidus 1001 alpha-L-rhamnosidase. Mikrobiol Zhurn. 2012 Nov-Dec;74(6):16-23. Russian. PubMed
  19. Davis DW. Determination of flavonones in citrus juice. Anal. Chem. 1947;19(1): 46-48.
  20. Yurchenko E.N., Khitrich N.V., Paryigina G.K. et al. Study of the structure of CoCl2  complexes with  tetramethylthiuram disulphide. Izv. SO AN SSSR. 1988;(4):89-93.
  21. Khitrich N. V., Seifullina I. I., Nefedov S. E., Mazepa A. V. Interaction between N,N,N’,N’-Tetramethylthiuram Disulfide and Cobalt(II) Salts: Dependence of the Product Composition and Structure on the Nature of the Anion. Russ. J. Inorganic Chem. 2006;51(7):1–9.
  22. Khitrich N. V., Seifullina I. I., Starikova Z. A. Molecular Complexes of Cobalt(III) Dithiocarbamates with Iodine. Russ. J. Inorganic Chem. 2002;47(1):85–91.
  23. Khitrich N. V., Seifullina I. I. Synthesis and structure of tris(dithiocarbamates) cobalt (III). Odesa National University Herald. Chemistry. 2000;5(2):27-32.
  24. Khitrich N. V., Kolchinsky E. V. Mater. Sci. Confer. Young Scientists of Chemical Faculty of Odessa University. Odessa, 1989. P. 2–6.
  25. Khitrich N. V., Seifullina I. I. Characteristic Features of Reaction between Cobalt(III) Dithiocarbamates and Chlorine or Bromine. Rus. J. Coordin. Chem. 2000;26(11):848-853.
  26. Varbanets LD, Matselyukh ОV, Nidyalkova NА, Аvdiyuk ЕV, Gudzenko АV, Seifullina II, Маsаnоvets GN, Khitrich NV. The coordination compounds of cobalt (II, III) with dithiocarbamic acid derivatives — modificators of hydrolytic enzymes activity. Biotechnol. Acta. 2013;6(1):73–80.

 


Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.