Ukr.Biochem.J. 2014; Volume 86, Issue 3, May-Jun, pp. 77-87

doi: http://dx.doi.org/10.15407/ubj86.03.077

Effect of the T-domain on intracellular transport of diphtheria toxin

А. J. Labyntsev, D. V. Kolybo, E. S. Yurchenko,
A. A. Kaberniuk, N. V. Korotkevych, S. V. Komisarenko

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: lab.andrey@gmail.com

Subunit B of diphtheria toxin (DT), which consists of two domains: R (receptor-binding) and T (transmembrane), plays an important role in toxin-receptor binding on the cell-targets and in transportation of catalytic subunit A to the cell cytosol. Recombinant analogues of the subunit B are promising representatives in the unique class of transporting proteins, able to deliver different types of biologically active molecules to cell cytosol. In the development of these protein constructs understanding of the role of each of the DT fragments in determination of transporting pathways of endocytosed complex toxin-receptor is urgently required.
We have studied in this work the T-domain effect on intracellular transport of recombinant fragments of DT. We have compared intracellular transport of the R-domain and the subunit B, the last one consisted of both R-domain and T-domain. Recombinant fragments of DT used in this work were labeled with fluorescent proteins, which allowed applying colocalization technique for our study. Application of confocal microscopy technique revealed differences in transportation of recombinant derivates of DT in Vero cells: R domain moved faster than subunit B to tubular compartments. Analysis of R-domain and subunit B transportation confirmed almost linear increase of their colocalization with the time regarding to Pearsons correlation coefficient (PCC). However, amount of colocalized with R-domain subunit B were not linearly increased with time according to Manders coefficient (M1), this could indicate the ability of subunit B to transport to such compartments that R-domain do not reach. Possible role of the T-domain in intracellular transportation and compartmentalization of the toxin may be associated with the ability of the T-domain to form a proton channels and its ability to interact with COPI complex.

Keywords: , , , , ,


References:

  1. Romaniuk SI, Kolibo DB, Komisarenko SV. Perspectives of application of recombinant diphtheria toxin derivatives. Bioorg Khim. 2012 Nov-Dec;38(6):639-52. Review. Russian. PubMed
  2. Kolybo DV, Labyntsev AA, Romaniuk SI, Kaberniuk AA, Oliinyk OM, Korotkevich NV, Komisarenko SV. Immunobiology of diphtheria. Recent approaches for the prevention, diagnosis, and treatment of disease. Biotechnol. Acta. 2013;6(4):43–62. CrossRef
  3. Gordon VM, Klimpel KR, Arora N, Henderson MA, Leppla SH. Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect Immun. 1995 Jan;63(1):82-7. PubMed, PubMedCentral
  4. Gordon VM, Rehemtulla A, Leppla SH. A role for PACE4 in the proteolytic activation of anthrax toxin protective antigen. Infect Immun. 1997 Aug;65(8):3370-5. PubMed, PubMedCentral
  5. Sucic JF, Moehring JM, Inocencio NM, Luchini JW, Moehring TJ. Endoprotease PACE4 is Ca2+-dependent and temperature-sensitive and can partly rescue the phenotype of a furin-deficient cell strain. Biochem J. 1999 May 1;339 ( Pt 3):639-47. PubMed, PubMedCentral
  6. Gordon VM, Leppla SH. Proteolytic activation of bacterial toxins: role of bacterial and host cell proteases. Infect Immun. 1994 Feb;62(2):333-40. Review.  PubMed, PubMedCentral
  7. Tsuneoka M, Nakayama K, Hatsuzawa K, Komada M, Kitamura N, Mekada E. Evidence for involvement of furin in cleavage and activation of diphtheria toxin. J Biol Chem. 1993 Dec 15;268(35):26461-5. PubMed
  8. Ratts R, Zeng H, Berg EA, Blue C, McComb ME, Costello CE, vanderSpek JC, Murphy JR. The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex. J Cell Biol. 2003 Mar 31;160(7):1139-50. PubMed, PubMedCentral, CrossRef
  9. Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D. The crystal structure of diphtheria toxin. Nature. 1992 May 21;357(6375):216-22. PubMed
  10. Rolf JM, Gaudin HM, Eidels L. Localization of the diphtheria toxin receptor-binding domain to the carboxyl-terminal Mr approximately 6000 region of the toxin. J Biol Chem. 1990 May 5;265(13):7331-7. PubMed
  11. Higashiyama S, Abraham JA, Miller J, Fiddes JC, Klagsbrun M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science. 1991 Feb 22;251(4996):936-9. PubMed, CrossRef
  12. Higashiyama S, Lau K, Besner GE, Abraham JA, Klagsbrun M. Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J Biol Chem. 1992 Mar 25;267(9):6205-12. PubMed
  13. Naglich JG, Metherall JE, Russell DW, Eidels L. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell. 1992 Jun 12;69(6):1051-61. PubMed
  14. Zdanovskiy AG, Zdanovskaya MV, Yankovskiy NK. Structure and function of diphtheria toxin. Mol Genet Microbiol Virol. 1988;12:3-10.
  15. Morris RE, Gerstein AS, Bonventre PF, Saelinger CB. Receptor-mediated entry of diphtheria toxin into monkey kidney (Vero) cells: electron microscopic evaluation. Infect Immun. 1985 Dec;50(3):721-7. PubMed, PubMedCentral
  16. Senzel L, Huynh PD, Jakes KS, Collier RJ, Finkelstein A. The diphtheria toxin channel-forming T domain translocates its own NH2-terminal region across planar bilayers. J Gen Physiol. 1998 Sep;112(3):317-24. PubMed, PubMedCentral, CrossRef
  17. Oh KJ, Senzel L, Collier RJ, Finkelstein A. Translocation of the catalytic domain of diphtheria toxin across planar phospholipid bilayers by its own T domain. Proc Natl Acad Sci USA. 1999 Jul 20;96(15):8467-70. PubMed, PubMedCentral, CrossRef
  18. Lanzrein M, Sand O, Olsnes S. GPI-anchored diphtheria toxin receptor allows membrane translocation of the toxin without detectable ion channel activity. EMBO J. 1996 Feb 15;15(4):725-34. PubMed, PubMedCentral
  19. Takahashi T, Umata T, Mekada E. Extension of juxtamembrane domain of diphtheria toxin receptor arrests translocation of diphtheria toxin fragment A into cytosol. Biochem Biophys Res Commun. 2001 Mar 2;281(3):690-6. PubMed, CrossRef
  20. Quertenmont P, Wolff C, Wattiez R, Vander Borght P, Falmagne P, Ruysschaert JM, Cabiaux V. Structure and topology of diphtheria toxin R domain in lipid membranes. Biochemistry. 1999 Jan 12;38(2):660-6. PubMed, CrossRef
  21. Lory S, Carroll SF, Collier RJ. Ligand interactions of diphtheria toxin. II. Relationships between the NAD site and the P site. J Biol Chem. 1980 Dec 25;255(24):12016-9. PubMed
  22. Ren J, Kachel K, Kim H, Malenbaum SE, Collier RJ, London E. Interaction of diphtheria toxin T domain with molten globule-like proteins and its implications for translocation. Science. 1999 May 7;284(5416):955-7. PubMed, CrossRef
  23. Hammond K, Caputo GA, London E. Interaction of the membrane-inserted diphtheria toxin T domain with peptides and its possible implications for chaperone-like T domain behavior. Biochemistry. 2002 Mar 5;41(9):3243-53. PubMedCrossRef
  24. Wang Y, Kachel K, Pablo L, London E. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin. Biochemistry. 1997 Dec 23;36(51):16300-8. PubMed, CrossRef
  25. Kaberniuk AA, Labyntsev AIu, Kolybo DV, Oliinyk OS, Redchuk TA, Korotkevych NV, Horchev VF, Karakhim SO, Komisarenko SV. Fluorescent derivatives of diphtheria toxin subunit B and their interaction with Vero cells. Ukr Biokhim Zhurn. 2009 Jan-Feb;81(1):67–77. Ukrainian. PubMed
  26. Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368-79. PubMed, CrossRef
  27. Yasumura Y, Kawakita Y. A line of cells derived from African green monkey kidney. Nippon Rinsho. 1963;21:1209-1210.
  28. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012 Jun 28;9(7):676-82. PubMed, PubMedCentral, CrossRef
  29. Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006 Dec;224(Pt 3):213-32. PubMed, CrossRef
  30. Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol. 2011 Apr;300(4):C723-42. PubMed, PubMedCentral, CrossRef
  31. Trujillo C, Taylor-Parker J, Harrison R, Murphy JR. Essential lysine residues within transmembrane helix 1 of diphtheria toxin facilitate COPI binding and catalytic domain entry. Mol Microbiol. 2010 May;76(4):1010-9. PubMed, PubMedCentral, CrossRef
  32. Aniento F, Gu F, Parton RG, Gruenberg J. An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. J Cell Biol. 1996 Apr;133(1):29-41. PubMed, PubMedCentral, CrossRef
  33. Razi M, Chan EY, Tooze SA. Early endosomes and endosomal coatomer are required for autophagy. J Cell Biol. 2009 Apr 20;185(2):305-21. PubMed, PubMedCentral, CrossRef
  34. Styers ML, O’Connor AK, Grabski R, Cormet-Boyaka E, Sztul E. Depletion of beta-COP reveals a role for COP-I in compartmentalization of secretory compartments and in biosynthetic transport of caveolin-1. Am J Physiol Cell Physiol. 2008 Jun;294(6):C1485-98. PubMed, CrossRef
  35. Kurnikov IV, Kyrychenko A, Flores-Canales JC, Rodnin MV, Simakov N, Vargas-Uribe M, Posokhov YO, Kurnikova M, Ladokhin AS. pH-triggered conformational switching of the diphtheria toxin T-domain: the roles of N-terminal histidines. J Mol Biol. 2013 Aug 9;425(15):2752-64. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.