Ukr.Biochem.J. 2015; Volume 87, Issue 4, Jul-Aug, pp. 32-36

doi: https://doi.org/10.15407/ubj87.04.032

Biochemical mechanisms of resistance to p-nitrochlorobenzene of karst caves microorganisms

O. S. Suslova1, P. V. Rokitko1, K. M. Bondar2,
O. O. Golubenko1, A. B. Tashyrev1

1Zabolotny Institute of Microbiology and Virology,
National Academy of Sciences of Ukraine, Kyiv;
2Taras Shevchenko National University of Kyiv, Ukraine;
e-mail: olga.suslova11@gmail.com

The biochemical mechanisms of resistance to persistent organic xenobiotic p-nitrochlorobenzene (NCB) of bacterial strains isolated from two cave clays ecosystems – Mushkarova Yama (Podolia, Ukraine) and Kuybyshevskaya (Western Caucasus, Abkhazia) have been established. It has been determined that chemoorganotrophic karst caves strains could interact with NCB and transform it reducing the nitro group with formation of p-chloroaniline (ClA) followed by further destruction of NCB aromatic ring. This explained high resistance of caves strains to NCB. The studied strains could potentially be used in wastewater treatment from nitrochloraromatic compounds.

Keywords: , , ,


References:

  1. Gvozdiak PI, Mogilevich NI, Tashirev AB. Transformation of p-nitrochlorobenzene by Escherichia coli. Mikrobiologiia. 1983 Jan-Feb;52(1):22-6. Russian. PubMed
  2. Tashyrev AB, Romanovskaia VA, Rokitko PV, Matveeva NA, Shilin SO, Tashireva AA. Synthesis of melanin pigments by Antarctic black yeast. Mikrobiol Zhurn. 2012 Sep-Oct;74(5):2-8. Russian. PubMed
  3. Tashyrev AB, Rokitko PV, Levishko AS, Romanovskaya VA, Tashyreva AA. Resistance to toxic metals of chemoorganotrophic bacteria isolated from the Antarctic cliffs. Mikrobiol Zhurn. 2012 Mar-Apr;74(2):3-7.  Russian. PubMed
  4.  Tashyrev AB, Romanovskaya VA, Rokitko PV, Tashyreva AA. Multiple resistance to toxic metals of Antarctic cliffs microorganisms (o.Galindez). Ukr  Antarktichny Zhurn. 2011-2012;11-12:212-221. (In Russian).
  5. Suslova O, Govorukha V, Brovarskaya O, Matveeva N, Tashyreva H, Tashyrev O. Method for determining organic compound concentration in biological systems by permanganate redox titration. Int J Bioautomation. 2014;18(1):45-52.
  6. Zhang L, Wang X, Jiao Y, Chen X, Zhou L, Guo K, Ge F, Wu J. Biodegradation of 4-chloronitrobenzene by biochemical cooperation between Sphingomonas sp. strain CNB3 and Burkholderia sp. strain CAN6 isolated from activated sludge. Chemosphere. 2013 May;91(9):1243-9. PubMed, CrossRef
  7. Wu H, Wei C, Wang Y, He Q, Liang S. Degradation of o-chloronitrobenzene as the sole carbon and nitrogen sources by Pseudomonas putida OCNB-1. J Environ Sci (China). 2009 Jan;21(1):89-95.  PubMed, CrossRef
  8. Arora PK, Sasikala Ch, Ramana ChV. Degradation of chlorinated nitroaromatic compounds. Appl Microbiol Biotechnol. 2012 Mar;93(6):2265-77. Review.  PubMed, CrossRef
  9. Tashyrev AB, Tihnenko SA. Transformation of p-ntrohlorbenzene by obligate anaerobic microorganisms. In the book. “Microbiology of water treatment”: Abstracts 2 Union Conference. Kiev.  1982. P. 194. (In Russian).
  10. Desai C, Pathak H, Madamwar D. Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour Technol. 2010 Mar;101(6):1558-69. Review. PubMed, CrossRef
  11. Li Haixiang, Yang Xin, Zhong Fohua, Li Junying, Xia Siqing. Experimental study on para-nitrochlorobenzene (p-NCB) removal from groundwater by autohydrogenotrophic microorganism. Chin J Environ Eng. 2011;2:43-48.

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.