Ukr.Biochem.J. 2013; Volume 85, Issue 5, Sep-Oct, pp. 17-26


Substrate specificity of Cryptococcus albidus and Eupenicillium erubescens α-L-rhamnosidases

Е. V. Gudzenko, L. D. Varbanets

Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv;

The substrate specificity of Cryptococcus albidus and Eupenicillium erubescens α-L-rhamnosidases has been investigated. It is shown that the enzymes are able to act on synthetic and natural substrates, such as naringin, neohesperidin. α-L-Rhamnosidases hydrolysed the latter ones very efficiently, in this case E. erubescens enzyme was characterized by higher values of Vmax in comparison with the enzyme of C. albidus. However the C. albidus α-L-rhamnosidase showed greater affinity for naringin and neohesperidin than the enzyme of E. erubescens (Km 0.77 and 3.3 mM and 5.0 and 3.0 mM, respectively). As regards the synthetic derivatives of monosaccharides, both enzymes exhibited narrow specificity for glycon: E. erubescens α-L-rhamnosidase – only to the p-nitrophenyl-α-L-rhamnopiranoside (Km 1.0 mM, Vmax 120 µmol/min/mg protein), and C. albidus – to p-nitrophenyl-α-D-glucopyranoside (Km 10 mM, Vmax 5 µmol/min/mg protein). Thus, it was found that the enzyme preparations of E. erubescens and C. albidus are differed by their substrate specifici­ty. The ability of E. erubescens and C. albidus α-L-rhamnosidases to hydrolyse natural substrates: naringin and neohesperidin, evidences for their specificity for α-1,2-linked L-rhamnose. Based on these data, we can predict the use of E. erubescens and C. albidus α-L-rhamnosidases in various industries, food industry in particular. This is also confirmed by the fact that the investigated α-L-rhamnosidases were stable at 20% concentration of ethanol and 500 mM glucose in the reaction mixture.

Keywords: , , , , , ,


  1. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309-16. PubMed, PubMedCentral, CrossRef
  2.  Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997 Oct;7(5):637-44. Review. PubMed, CrossRef
  3.  Liu T, Yu H, Zhang C, Lu M, Piao Y, Ohba M, Tang M, Yuan X, Wei S, Wang K, Ma A, Feng X, Qin S, Mukai C, Tsuji A, Jin F. Aspergillus niger DLFCC-90 rhamnoside hydrolase, a new type of flavonoid glycoside hydrolase. Appl Environ Microbiol. 2012 Jul;78(13):4752-4. PubMedPubMedCentralCrossRef
  4. González-Barrio R, Trindade LM, Manzanares P, de Graaff LH, Tomás-Barberán FA, Espín JC. Production of bioavailable flavonoid glucosides in fruit juices and green tea by use of fungal alpha-L-rhamnosidases. J Agric Food Chem. 2004 Oct 6;52(20):6136-42. PubMed, CrossRef
  5. Takatsu T, Takahashi S, Takamatsu Y, Shioiri T, Iwado S, Haneishi T. Chloropolysporins A, B and C, novel glycopeptide antibiotics from Faenia interjecta sp. nov. IV. Partially deglycosylated derivatives. J Antibiot (Tokyo). 1987 Jul;40(7):941-5. PubMed, CrossRef
  6. Yadav V, Yadav PK, Yadav S, Yadav KDS. α-l-Rhamnosidase: A review. Process Biochemistry. 2010 Aug;45(8):1226-1235. CrossRef
  7.  Soria F, Ellenrieder G, Oliveira GB, Cabrera M, Carvalho LB Jr. α-L-rhamnosidase of Aspergillus terreus immobilized on ferromagnetic supports. Appl Microbiol Biotechnol. 2012 Feb;93(3):1127-34. PubMed, CrossRef
  8. Del Nobile MA, Piergovanni L, Buonocore GG, Fava P, Puglisi ML, Nicolais L. Naringinase immobilization in polymeric films Intended for food packaging applications. J Food Sci. 2003 Aug;68(6):2046-2049. CrossRef
  9. Di Lazzaro A, Morana A, Schiraldi C, Martino A, Ponzone C, De Rosa M. An enzymatic process for the production of the pharmacologically active glycoside desglucodesrhamnoruscin from Ruscus aculeatus L. J Mol Catalysis B: Enzymatic. 2001 Jan;11(4-6):307–314. CrossRef
  10.  Varbanets LD, Borzova NV. Glycosydases of microorganisms and methods of their investigations. Kyiv: Naukova dumka, 2010. 437 p.
  11. Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res. 2004 Oct;24(10):851–874. CrossRef
  12. Hudzenko EV, Borzova NV, Varbanets’ LD. Optimization of cultivation conditions of alpha-L-rhamnosidases producers– representatives of different taxonomic groups of microorganisms. Mikrobiol Zhurn. 2011 May-Jun;73(3):46-53. Ukrainian. PubMed
  13. Gudzenko EV, Varbanets LD. Purification and physico-chemical properties of Eupenicillium erubescens alpha-L-rhamnosidase. Mikrobiol Zhurn. 2012 Mar-Apr;74(2):14-21. Russian. PubMed
  14. Gudzenko EV, Varbanets LD. Purification and physico-chemical properties of Cryptococcus albidus 1001 alpha-L-rhamnosidase. Mikrobiol Zhurn. 2012 Nov-Dec;74(6):16-23. Russian. PubMed
  15. Romero C, Manjón A, Bastida J, Iborra JL. A method for assaying the rhamnosidase activity of naringinase. Anal Biochem. 1985 Sep;149(2):566-71. PubMed, CrossRef
  16.  Davis DW. Determination of flavonones in citrus juice. Anal Biochem. 1947;19(1):46-48.
  17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265-75. PubMed
  18. Dixon M,  Webb E. Enzymes. M.: Mir, 1982; 1: 235 p.
  19. Lakin GF. Biometrics. Moscow: Vysshaya Shkola, 1990. 352 p.
  20. Manzanares P., Valles S., Ramon D., Orejas M. α-L-rhamnosidase: old and new insights. Industrial Enzymes, Springer, 2007. Р. 117-140. CrossRef
  21.  Rzaeva OM. α-L-рамнозидаза Penicillium commune 266. Avtoref. Dis. … Kand. Biol. Nauk: 03.00.07 / Rzaeva Olga Mykolaivna. Danylo Zabolotny Zabolotny Institute of Microbiology and Virology. Kiyv, 2007. 21 p.
  22. Abbate E, Palmeri R, Todaro A, Blanco R, Spagna G. Production of a α-L-rhamnosidase from Aspergillus terreus using citrus solid waste as inducer for application in juice industry. Chem Eng Transact. 2012;27:253-258.
  23. Michlmayr H, Brandes W, Eder R, Schümann C, del Hierro AM, Kulbe KD. Characterization of two distinct glycosyl hydrolase family 78 alpha-L-rhamnosidases from Pediococcus acidilactici. Appl Environ Microbiol. 2011 Sep;77(18):6524-30. PubMed, PubMedCentral, CrossRef
  24. Yanai T, Sato M. Purification and characterization of an alpha-L-rhamnosidase from Pichia angusta X349. Biosci Biotechnol Biochem. 2000 Oct;64(10):2179-85. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.