Ukr.Biochem.J. 2016; Volume 88, Issue 3, May-Jun, pp. 36-45

doi: https://doi.org/10.15407/ubj88.03.036

Plasminogen fragments K 1-3 and K 5 bind to different sites in fibrin fragment DD

T. V. Grinenko, L. G. Kapustianenko, T. A. Yatsenko, O. I. Yusova, V. N. Rybachuk

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: grinenko@biochem.kiev.ua

Specific plasminogen-binding sites of fibrin molecule are located in Аα148-160 regions of C-terminal domains. Plasminogen interaction with these sites initiates the activation process of proenzyme and subsequent fibrin lysis. In this study we investigated the binding of plasminogen fragments K 1-3 and K 5 with fibrin fragment DD and their effect on Glu-plasminogen interaction with DD. It was shown that the level of Glu-plasminogen binding to fibrin fragment DD is decreased by 50-60% in the presence of K 1-3 and K 5. Fragments K 1-3 and K 5 have high affinity to fibrin fragment DD (Kd is 0.02 for K 1-3 and 0.054 μМ for K 5). K 5 interaction is independent and K 1-3 is partly dependent on C-terminal lysine residues. K 1-3 interacts with complex of fragment DD-immobilized K 5 as well as K 5 with complex of fragment DD-immobilized K 1-3. The plasminogen fragments do not displace each other from binding sites located in fibrin fragment DD, but can compete for the interaction. The results indicate that fibrin fragment DD contains different binding sites for plasminogen kringle fragments K 1-3 and K 5, which can be located close to each other. The role of amino acid residues of fibrin molecule Аα148-160 region in interaction with fragments K 1-3 and K 5 is discussed.

Keywords: , ,


References:

  1. Ponting CP, Marshall JM, Cederholm-Williams SA. Plasminogen: a structural review. Blood Coag Fibrinol. 1992 Oct; 3(5): 605-14. CrossRef
  2. Aisina RB, Mukhametova LI. Structure and functions of plasminogen/plasmin system. Bioorg Khim. 2014 Nov-Dec;40(6):642-57. Review. (In Russian).  PubMed
  3. Winn ES, Hu SP, Hochschwender SM, Laursen RA. Studies on the lysine-binding sites of human plasminogen. The effect of ligand structure on the binding of lysine analogs to plasminogen. Eur J Biochem. 1980 Mar;104(2):579-86. PubMed, CrossRef
  4. Matsuka YuV, Novokhatniy VV, Kudinov SA. Two classes of lysine-binding sites of plasminogen molecule. Ukr Biokhim Zhurn. 1990 Mar-Apr;62(2):83-6. (In Russian). PubMed
  5. Verevka SV, Grinenko TV. Pseudo-functional interactions of plasminogen: molecular mechanisms and pathologic appearance. In: Advances in Medicine and biology. Nova Science. 2011; 34: 35-61.
  6. Xue Y, Bodin C, Olsson K. Crystal structure of the native plasminogen reveals an activation-resistant compact conformation. J Thromb Haemost. 2012 Jul;10(7):1385-96. PubMed, CrossRef
  7. Zhang L, Gong Y, Grella DK, Castellino FJ, Miles LA. Endogenous plasmin converts Glu-plasminogen to Lys-plasminogen on the monocytoid cell surface. J Thromb Haemost. 2003 Jun;1(6):1264-70. PubMed, CrossRef
  8. Thorsen S, Müllertz S, Suenson E, Kok P. Sequence of formation of molecular forms of plasminogen and plasmin-inhibitor complexes in рlasma activated by urokinase or tissue-type plasminogen activator. Biochem J. 1984 Oct; 223(1): 179-87. CrossRef
  9. Bok RA, Mangel WF. Quantitative characterization of the binding of plasminogen to intact fibrin clots, lysine-sepharose, and fibrin cleaved by plasmin. Biochemistry. 1985 Jun 18;24(13):3279-86. PubMed, CrossRef
  10. Grinenko TV, Kudinov S.A. Characterization of complex formation between Glu- and Lys- plasminogen forms and fibrinogen/fibrin.  Human and Animal Biochemistry. Kyiv: Naukova Dumka. 1991; 15: 66-76. (In Russian).
  11.  Wu HL, Chang BI, Wu DH, Chang LC, Gong CC, Lou KL, Shi GY. Interaction of plasminogen and fibrin in plasminogen activation. J Biol Chem. 1990 Nov 15;265(32):19658-64. PubMed
  12. Lucas MA, Fretto LJ, McKee PA. The binding of human plasminogen to fibrin and fibrinogen. J Biol Chem. 1983 Apr 10;258(7):4249-56. PubMed
  13. Lezhen TI, Kudinov SA, Medved’ LV. Plasminogen-binding site of the thermostable region of fibrinogen fragment D. FEBS Lett. 1986 Mar 3;197(1-2):59-62. PubMed, CrossRef
  14. Grinenko TV, Tretyachenko VG, Kudiov SA, Medved LV. Plasminogen-binding centers of molecules of fibrinogen, fibrin and products of their proteolysis. Biokhimiia. 1987 Oct;52(10):1732-9. (In Russian). PubMed
  15. Nieuwenhuizen W. Fibrin-mediated plasminogen activation. Ann N Y Acad Sci. 2001;936:237-46. PubMed, CrossRef
  16. Schielen WJ, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence A alpha-(148-160) in fibrin, but not in fibrinogen, is accessible to monoclonal antibodies. Proc Natl Acad Sci USA. 1989 Nov;86(22):8951-4. PubMed, PubMedCentral, CrossRef
  17. Yakovlev S, Makogonenko E, Kurochkina N, Nieuwenhuizen W, Ingham K, Medved L. Conversion of fibrinogen to fibrin: mechanism of exposure of tPA- and plasminogen-binding sites. Biochemistry. 2000 Dec 26;39(51):15730-41. PubMed, CrossRef
  18. Medved L, Nieuwenhuizen W. Molecular mechanisms of initiation of fibrinolysis by fibrin. Thromb Haemost. 2003 Mar;89(3):409-19. Review. PubMed
  19. Voskuilen M, Vermond A, Veeneman GH, van Boom JH, Klasen EA, Zegers ND, Nieuwenhuizen W. Fibrinogen lysine residue A alpha 157 plays a crucial role in the fibrin-induced acceleration of plasminogen activation, catalyzed by tissue-type plasminogen activator. J Biol Chem. 1987 May 5;262(13):5944-6. PubMed
  20. Deutsch DG, Mertz ET. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095-6. PubMed, CrossRef
  21. Kapustianenko LG, Iatsenko TA, Yusova EI, Grinenko TV. Isolation and purification of a kringle 5 from human plasminogen using AH-Sepharose. Biotechnologia Acta. 2014; 7 (4): 35-42. CrossRef
  22. Tykhomyrov AA, Yusova EI, Diordieva SI, Corsa VV, Grinenko TV. Isolation and characterization of antibodies against human plasminogen fragment K 1-3. Biotechnologia Acta. 2013;6(1):86-96. (In Ukrainian). CrossRef
  23. Kapustianenko LG. Polyclonal antibodies with monospecificity to plasminogen fragment kringle 5. Ukr Biochem J. 2014; 85(5, Suppl.1): 56-57. (In Ukrainian).
  24. Varetska TV. Microgeterogenety of fibrinogen. Cryofibrinogen. Ukr Biokhim Zhurn. 1960;32:13-24.
  25. Pozdnjakova TM, Musjalkovskaja AA, Ugarova TP, Protvin DD, Kotsjuruba VN. On the properties of fibrin monomer prepared from fibrin clot with acetic acid. Thromb Res. 1979;16(1-2):283-8. PubMed, CrossRef
  26. Gitlin G, Bayer EA, Wilchek M. Studies on the biotin-binding site of avidin. Lysine residues involved in the active site. Biochem J. 1987 Mar 15;242(3):923-6. PubMedPubMedCentral, CrossRef
  27. Tsurupa G, Ho-Tin-Noé B, Anglés-Cano E, Medved L. Identification and characterization of novel lysine-independent apolipoprotein(a)-binding sites in fibrin(ogen) alphaC-domains. J Biol Chem. 2003 Sep 26;278(39):37154-9. PubMed, CrossRef
  28. Yatsenko TA,  Rybachuk VN, Kharchenko SM, Grinenko TV, Yusova EI. Effect of fibrinogen degradation products on various stages of the fibrinolytic process. J Pre-Clin Clin Res. 2015 Jun;9(1):18-22. CrossRef
  29. Zadorozhna MB, Grinenko TV, Yusova OI, Volkov GL. Binding of alpha-2-antiplasmin with fibrinogen/fibrin and their fragments independent of factor XIII. Ukr Biokhim Zhurn. 2004 Sep-Oct;76(5):71-7. (In Ukrainian). PubMed
  30. Grinenko TV, Skomorovska EV, Kudinov SA, Zolotareva EN. Features of the interaction of Glu- and Lys-forms of plasminogen with native and partially hydrolyzed fibrin. Biokhimiia. 1992 May;57(5):728-37. (In Russian). PubMed
  31. Grinenko TV, Tretyachenko VG, Skomorovska EV, Kudinov SA. Binding of Glu-plasminogen by fibrinogen and byproducts of its proteolysis. Biokhimiia. 1989 Feb;54(2):213-20. (In Russian). PubMed
  32. Stewart RJ, Fredenburgh JC, Rischke JA, Bajzar L, Weitz JI. Thrombin-activable fibrinolysis inhibitor attenuates (DD)E-mediated stimulation of plasminogen activation by reducing the affinity of (DD)E for tissue plasminogen activator. A potential mechanism for enhancing the fibrin specificity of tissue plasminogen activator. J Biol Chem. 2000 Nov 24;275(47):36612-20. PubMed, CrossRef
  33. Lugovskoy EV, Makogonenko EM, Komissarenko SV. Molecular mechanisms of formation and degradation of fibrin. Physical, chemical and immunochemical analysis. К.: Naukova Dumka, 2013. 230 p. (In Russian).
  34. Schielen WJ, Adams HP, Voskuilen M, Tesser GI, Nieuwenhuizen W. The sequence A alpha-(154-159) of fibrinogen is capable of accelerating the t-PA catalysed activation of plasminogen. Blood Coagul Fibrinolysis. 1991 Jun;2(3):465-70. PubMed, CrossRef
  35. Verevka SV, Miroshnychenko OS. 1-X-3 motif in inter-protein recognition: structures, widespreading and possible practical application. J Mol Recognit. 2001 Sep-Oct;14(5):315-8. PubMed, CrossRef
  36. Geiger JH, Cnudde SE. What the structure of angiostatin may tell us about its mechanism of action. J Thromb Haemost. 2004 Jan;2(1):23-34. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.