Ukr.Biochem.J. 2017; Volume 89, Issue 6, Nov-Dec, pp. 13-21

doi: https://doi.org/10.15407/ubj89.06.013

Copurification of chicken liver soluble thiamine monophosphatase and low molecular weight acid phosphatase

I. K. Kolas, A. F. Makarchikov

Grodno State Agrarian University;
Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus;
e-mail: a_makarchikov@yahoo.com

Thiamine monophosphatase (ThMPase) is an enzyme of thiamine metabolism in animals whose molecular nature has still to be elucidated. In this study we have achieved a 714-fold purification of a soluble enzyme possessing ThMPase activity from a chicken liver extract. In addition to ThMPase, acid phosphatase activity was traced during purification. Both activities proved to have coincident elution profiles at all chromatographic steps implying the same enzyme involved. The molecular weight of the enzyme was 18 kDa as estimated by gel filtration. Along with ThMP and p-nitrophenyl phosphate, the purified enzyme was capable of hydrolyzing flavin mononucleotide as well as phosphotyrosine. Subcellular distribution of ThMPase activity was also explored indicating its cytosolic localization. The results of the present work imply the involvement of low molecular weight acid phosphatase in thiamine metabolism in the chicken liver.

Keywords: , , ,


References:

  1. Makarchikov AF. Vitamin B1: metabolism and functions. Biochem (Moscow). Suppl. Ser. B: Biomedical Chemistry. 2009; 3(2): 116-128.
  2. Makarchikov AF, Lakaye B, Gulyai IE, Czerniecki J, Coumans B, Wins P, Grisar T, Bettendorff L. Thiamine triphosphate and thiamine triphosphatase activities: from bacteria to mammals. Cell Mol Life Sci. 2003 Jul;60(7):1477-88. PubMed, CrossRef
  3. Bettendorff L, Wirtzfeld B, Makarchikov AF, Mazzucchelli G, Frédérich M, Gigliobianco T, Gangolf M, De Pauw E, Angenot L, Wins P. Discovery of a natural thiamine adenine nucleotide. Nat Chem Biol. 2007 Apr;3(4):211-2. PubMed, CrossRef
  4. Gangolf M, Czerniecki J, Radermecker M, Detry O, Nisolle M, Jouan C, Martin D, Chantraine F, Lakaye B, Wins P, Grisar T, Bettendorff L. Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS One. 2010 Oct 25;5(10):e13616. PubMed, PubMedCentral, CrossRef
  5. Egi Y, Koyama S, Shikata H, Yamada K, Kawasaki T. Content of thiamin phosphate esters in mammalian tissues – an extremely high concentration of thiamin triphosphate in pig skeletal muscle. Biochem Int. 1986 Mar;12(3):385-90. PubMed
  6. Iwata H, Matsuda T, Tonomura H. Improved high-performance liquid chromatographic determination of thiamine and its phosphate esters in animal tissues. J Chromatogr. 1988 Oct 26;450(3):317-23. PubMed, CrossRef
  7. Miyoshi K, Egi Y, Shioda T, Kawasaki T. Evidence for in vivo synthesis of thiamin triphosphate by cytosolic adenylate kinase in chicken skeletal muscle. J Biochem. 1990 Aug;108(2):267-70. PubMed, CrossRef
  8. Lakaye B, Wirtzfeld B, Wins P, Grisar T, Bettendorff L. Thiamine triphosphate, a new signal required for optimal growth of Escherichia coli during amino acid starvation. J Biol Chem. 2004 Apr 23;279(17):17142-7. PubMed, CrossRef
  9. Gigliobianco T, Lakaye B, Wins P, El Moualij B, Zorzi W, Bettendorff L. Adenosine thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress. BMC Microbiol. 2010 May 21;10:148. PubMed, PubMedCentral, CrossRef
  10. Jurgenson CT, Begley TP, Ealick SE. The structural and biochemical foundations of thiamin biosynthesis. Annu Rev Biochem. 2009;78:569-603. PubMed, CrossRef
  11. Zhao R, Gao F, Goldman ID. Reduced folate carrier transports thiamine monophosphate: an alternative route for thiamine delivery into mammalian cells. Am J Physiol Cell Physiol. 2002 Jun;282(6):C1512-7. PubMed, CrossRef
  12. Goyer A. Thiamine in plants: aspects of its metabolism and functions. Phytochemistry. 2010 Oct;71(14-15):1615-24. PubMed, CrossRef
  13. Vovk AI, Babiy LV, Muravyova IV. Relative reactivity of thiamine monophosphate and thiamine diphosphate upon interaction with alkaline phosphatase. Ukr Biokhim Zhurn. 2002 Jan-Feb;74(1):93-6. (In Russian). PubMed
  14. Ogawa K, Sakai M, Inomata K. Recent findings on ultracytochemistry of thiamin phosphatases. Ann N Y Acad Sci. 1982;378:188-214. PubMed, CrossRef
  15. Knyihár-Csillik E, Bezzegh A, Böti S, Csillik B. Thiamine monophosphatase: a genuine marker for transganglionic regulation of primary sensory neurons. J Histochem Cytochem. 1986 Mar;34(3):363-71. PubMed, CrossRef
  16. Zylka MJ, Sowa NA, Taylor-Blake B, Twomey MA, Herrala A, Voikar V, Vihko P. Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron. 2008 Oct 9;60(1):111-22. PubMed, PubMedCentral, CrossRef
  17. Kolas IK, Makarchikov AF. Identification of thiamine monophosphate hydrolyzing enzymes in chicken liver. Ukr Biochem J. 2014 Nov-Dec;86(6):39-49. (In Russian). PubMed, CrossRef
  18. King TE. Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. Methods Enzymol. 1967; 10: 322-331. CrossRef
  19. Nordlie RC, Arion WJ. Glucose-6-phosphatase. Methods Enzymol. 1966; 9: 619-625. CrossRef
  20. Vassault A. Lactate dehydrogenase. UV method with pyruvate and NADH+. Meth Enzym Anal. 1983;3: 118-126.
  21. Burton K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315-23. PubMed, PubMedCentral, CrossRef
  22. Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95-7. PubMed, CrossRef
  23. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. PubMed, CrossRef
  24. Kiessling KH. Thiamine phosphatases in liver, kidney, and brain of the rat. Acta Chem Scand. 1960;14:1669-1670.  CrossRef
  25. Haider S, Naz R, Khan AR, Saeed A. Acid phosphatases in chicken’s liver. J Chem Soc Pak. 1993;15(1):64-71.
  26. Graddis TJ, McMahan CJ, Tamman J, Page KJ, Trager JB. Prostatic acid phosphatase expression in human tissues. Int J Clin Exp Pathol. 2011 Mar;4(3):295-306.  PubMed, PubMedCentral
  27. Panara F, Mileti A. Subcellular localization of high- and low-molecular weight acid phosphatases from chicken liver. Int J Biochem. 1986;18(11):1057-9. PubMed, CrossRef
  28. Siddiqua A, Rehmat M, Saeed A, Amin S, Naz R, Sherazi M, Khan GM, Saeed A. Acid phosphatases from the liver of Labeo rohita: purification and characterization. Biol Pharm Bull. 2008 May;31(5):802-8. PubMed, CrossRef
  29. Panara F. Isolation and partial characterization of high and low molecular weight acid phosphatases from chicken liver. Int J Biochem. 1985;17(11):1213-7. PubMed, CrossRef
  30. Heinrikson RL. Purification and characterization of a low molecular weight acid phosphatase from bovine liver. J Biol Chem. 1969 Jan 25;244(2):299-307. PubMed
  31. Okada M, Owada K, Nakagawa H. [Phosphotyrosine]protein phosphatase in rat brain. A major [phosphotyrosine]protein phosphatase is a 23 kDa protein distinct from acid phosphatase. Biochem J. 1986 Oct 1;239(1):155-62. PubMed, PubMedCentral, CrossRef
  32. Fujimoto S, Murakami K, Ishikawa A, Himi K, Ohara A. Two distinct low-molecular-weight acid phosphatases from rat liver. Chem Pharm Bull (Tokyo). 1988 Aug;36(8):3020-6. PubMed, CrossRef
  33. Zhang ZY, Van Etten RL. Purification and characterization of a low-molecular-weight acid phosphatase – a phosphotyrosyl-protein phosphatase from bovine heart. Arch Biochem Biophys. 1990 Oct;282(1):39-49. PubMed, CrossRef
  34. Khan AR, Naz R, Hassan M, Saeed A. The low and high molecular weight acid phosphatases in sheep liver. J Chem Soc Pak. 1997;19:60-69.
  35. Granjeiro JM, Taga EM, Aoyama H. Purification and characterization of a low-molecular-weight bovine kidney acid phosphatase. An Acad Bras Cienc. 1997;69(4):451-60. PubMed
  36. Chernoff J, Li HC. A major phosphotyrosyl-protein phosphatase from bovine heart is associated with a low-molecular-weight acid phosphatase. Arch Biochem Biophys. 1985 Jul;240(1):135-45. PubMed, CrossRef
  37. Boivin P, Galand C. The human red cell acid phosphatase is a phosphotyrosine protein phosphatase which dephosphorylates the membrane protein band 3. Biochem Biophys Res Commun. 1986 Jan 29;134(2):557-64. PubMed, CrossRef
  38. He RJ, Yu ZH, Zhang RY, Zhang ZY. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin. 2014 Oct;35(10):1227-46.  PubMed PubMedCentral, CrossRef
  39. Fuchs KR, Shekels LL, Bernlohr DA. Analysis of the ACP1 gene product: classification as an FMN phosphatase. Biochem Biophys Res Commun. 1992 Dec 30;189(3):1598-605. PubMed, CrossRef
  40. Granjeiro JM, Ferreira CV, Jucá MB, Taga EM, Aoyama H. Bovine kidney low molecular weight acid phosphatase: FMN-dependent kinetics. Biochem Mol Biol Int. 1997 May;41(6):1201-8. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.