Ukr.Biochem.J. 2018; Volume 90, Issue 3, May-Jun, pp. 17-31

doi: https://doi.org/10.15407/ubj90.03.017

Examining c-di-GMP and possible quorum sensing regulation in Pseudomonas fluorescens SBW25: links between intra- and inter-cellular regulation benefits community cooperative activities such as biofilm formation

O. V. Moshynets1, D. Foster2, S. A. Karakhim3, K. McLaughlin4, S. P. Rogalsky5, S. Y. Rymar1, G. P. Volynets1, A. J. Spiers4

1Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv;
e-mail: moshynets@gmail.com; galina.volinetc@gmail.com
2Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, United Kingdom;
e-mail: dona.foster@ndm.ox.ac.uk;
3Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: laserlab@biochem.kiev.ua;
4School of Science, Engineering and Technology, Abertay University, United Kingdom;
e-mail: mclaughlinkimberley@gmail.com; a.spiers@abertay.ac.uk;
5Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: sergey.rogalsky@gmail.com

Bacterial success in colonizing complex environments requires individual response to micro-scale conditions as well as community-level cooperation to produce large-scale structures such as biofilms. Connecting individual and community responses could be achieved by linking the intracellular sensory and regulatory systems mediated by bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) and other compounds of individuals with intercellular quorum sensing (QS) regulation controlling populations. There is growing evidence to suggest that biofilm formation by many pseudomonads is regulated by both intra and intercellular systems, though in the case of the model Pseudomonas fluorescens SBW25 Wrinkly Spreader in which mutations increasing c-di-GMP levels result in the production of a robust cellulose-based air-liquid interface biofilm, no evidence for the involvement of QS regulation has been reported. However, our recent review of the P. fluorescens SBW25 genome has identified a potential QS regulatory pathway and other QS–associated genes linked to c-di-GMP homeostasis, and QS signal molecules have also been identified in culture supernatants. These findings suggest a possible link between c-di-GMP and QS regulation in P. fluorescens SBW25 which might allow a more sophisticated and responsive control of cellulose production and biofilm formation when colonising the soil and plant-associated environments P. fluorescens SBW25 normally inhabits.

Keywords: , , , , ,


References:

  1. Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms. FEMS Microbiol Rev. 2009 Jan;33(1):206-24.  PubMed, CrossRef
  2. Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol. 2016 Sep;14(9):589-600. PubMed, CrossRef
  3. Galloway WR, Hodgkinson JT, Bowden SD, Welch M, Spring DR. Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev. 2011 Jan 12;111(1):28-67.  PubMed, CrossRef
  4. Coggan KA, Wolfgang MC. Global regulatory pathways and cross-talk control pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr Issues Mol Biol. 2012;14(2):47-70. PubMed, CrossRef
  5. Stacy AR, Diggle SP, Whiteley M. Rules of engagement: defining bacterial communication. Curr Opin Microbiol. 2012 Apr;15(2):155-61. PubMed, CrossRef
  6. Garg N, Manchanda G, Kumar A. Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek. 2014 Feb;105(2):289-305. PubMed, CrossRef
  7. Irie Y, Roberts AEL, Kragh KN, Gordon VD, Hutchison J, Allen RJ, Melaugh G, Bjarnsholt T, West SA, Diggle SP. The Pseudomonas aeruginosa PSL Polysaccharide Is a Social but Noncheatable Trait in Biofilms. MBio. 2017 Jun 20;8(3). pii: e00374-17. PubMed, PubMedCentral, CrossRef
  8. Moshynets OV, Spiers AJ. Viewing biofilms within the larger context of bacterial aggregations, in: Microbial biofilms – Importance and applications, Dhanasekaran D, Thajuddin N (Eds), InTech Publishers, Rijeka, Croatia, 2016.  CrossRef
  9. Rainey PB, Travisano M. Adaptive radiation in a heterogeneous environment. Nature. 1998 Jul 2;394(6688):69-72. PubMed, CrossRef
  10. Spiers AJ. A mechanistic explanation linking adaptive mutation, niche change, and fitness advantage for the wrinkly spreader. Int J Evol Biol. 2014;2014:675432.  PubMed, PubMedCentral, CrossRef
  11. Koza A, Kusmierska A, McLaughlin K, Moshynets O, Spiers AJ. Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation. FEMS Microbiol Lett. 2017 Jul 3;364(12). PubMed, CrossRef
  12. Kirisits MJ, Parsek MR. Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cell Microbiol. 2006 Dec;8(12):1841-9. PubMed, CrossRef
  13. Williams P, Cámara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol. 2009 Apr;12(2):182-91. PubMed, CrossRef
  14. Haussler S, Fuqua C.  Biofilms 2012: new discoveries and significant wrinkles in a dynamic field. J Bacteriol. 2013 Jul;195(13):2947-58. PubMed, PubMedCentral, CrossRef
  15. Waters CM, Lu W, Rabinowitz JD, Bassler BL. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol. 2008 Apr;190(7):2527-36. PubMed, PubMedCentral, CrossRef
  16. Schmid N, Suppiger A, Steiner E, Pessi G, Kaever V, Fazli M, Tolker-Nielsen T, Jenal U, Eberl L. High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111.  Microbiology. 2017 May;163(5):754-764.  PubMed,CrossRef
  17. Rainey PB, Bailey MJ. Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. Mol Microbiol. 1996 Feb;19(3):521-33. PubMed, CrossRef
  18. Spiers AJ, Field D, Bailey M, Rainey PB. Notes on designing a partial genomic database: The PfSBW25 Encyclopaedia, a sequence database for Pseudomonas fluorescens SBW25. Microbiology. 2001 Feb;147(Pt 2):247-9. PubMed, CrossRef
  19. Silby MW, Cerdeño-Tárraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang XX, Moon CD, Gehrig SM, Godfrey SA, Knight CG, Malone JG, Robinson Z, Spiers AJ, Harris S, Challis GL, Yaxley AM, Harris D, Seeger K, Murphy L, Rutter S, Squares R, Quail MA, Saunders E, Mavromatis K, Brettin TS, Bentley SD, Hothersall J, Stephens E, Thomas CM, Parkhill J, Levy SB, Rainey PB, Thomson NR. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 2009;10(5):R51. PubMed, PubMedCentral, CrossRef
  20. Spiers AJ. Bacterial evolution in simple microcosms, in: Microcosms: Ecology, Biological Implications and Environmental Impact, Microbiology Research Advances Series, C.H. Harris (Ed), Nova Publishers, Hauppauge, NY, USA, 2013.
  21. Campilongo R, Fung RKY, Little RH, Grenga L, Trampari E, Pepe S, Chandra G, Stevenson CEM, Roncarati D, Malone JG. One ligand, two regulators and three binding sites: How KDPG controls primary carbon metabolism in Pseudomonas. PLoS Genet. 2017 Jun 28;13(6):e1006839. PubMed, PubMedCentral, CrossRef
  22. Grenga L, Chandra G, Saalbach G, Galmozzi CV, Kramer G, Malone JG. Analyzing the Complex Regulatory Landscape of Hfq – an Integrative, Multi-Omics Approach. Front Microbiol. 2017 Sep 20;8:1784.  PubMed, PubMed, CrossRef
  23. Buckling A, Craig Maclean R, Brockhurst MA, Colegrave N. The Beagle in a bottle. Nature. 2009 Feb 12;457(7231):824-9. PubMed, CrossRef
  24. Lenski RE. Evolution in action: a 50,000-generation salute to Charles Darwin. Microbe. 2011; 6(1): 30-33. CrossRef
  25. Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC. Experimental evolution. Trends Ecol Evol. 2012 Oct;27(10):547-60. PubMed,CrossRef
  26. Mann EE, Wozniak DJ. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev. 2012 Jul;36(4):893-916. PubMed, PubMedCentral, CrossRef
  27. Häussler S. Multicellular signalling and growth of Pseudomonas aeruginosa. Int J Med Microbiol. 2010 Dec;300(8):544-8.  PubMed, CrossRef
  28. Wolcott R, Costerton JW, Raoult D, Cutler SJ. The polymicrobial nature of biofilm infection. Clin Microbiol Infect. 2013 Feb;19(2):107-12. PubMed, CrossRef
  29. Spiers AJ, Arnold DL, Moon CD, Timms-Wilson TM. A survey of A-L biofilm formation and cellulose expression amongst soil and plant-associated Pseudomonas isolates, in: Bailey MJ, Lilley AK, Timms-Wilson TM, editors. Microbial ecology of aerial plant surfaces. CABI: 121-131. CrossRef
  30. Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ. Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol. 2006 Nov;8(11):1997-2011. PubMed, CrossRef
  31. Robertson M, Hapca SM, Moshynets O, Spiers AJ. Air-liquid interface biofilm formation by psychrotrophic pseudomonads recovered from spoilt meat. Antonie Van Leeuwenhoek. 2013 Jan;103(1):251-9. PubMed, CrossRef
  32. Spiers AJ, Deeni YY, Folorunso AO, Koza A, Moshynets O, Zawadzki K. Cellulose expression in Pseudomonas fluorescens SBW25 and other environmental pseudomonads. In: Van De Ven TGM, Godbout L, editors. Cellulose – Medical, Pharmaceutical and Electronic Applications, 2013. InTech Publishers: 1-26.
  33. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301-7. PubMed
  34. Spiers AJ, Kahn SG, Bohannon J, Travisano M, Rainey PB. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics. 2002 May;161(1):33-46. PubMed, PubMedCentral
  35. Green JH, Koza A, Moshynets O, Pajor R, Ritchie MR, Spiers AJ. Evolution in a test tube: rise of the Wrinkly Spreaders. J Biol Educ. 2011;45(1):54-59.  CrossRef
  36. Spiers AJ. Wrinkly-Spreader fitness in the two-dimensional agar plate microcosm: maladaptation, compensation and ecological success. PLoS One. 2007 Aug 15;2(8):e740. PubMed, PubMedCentral, CrossRef
  37. Koza A, Moshynets O, Otten W, Spiers AJ. Environmental modification and niche construction: developing O2 gradients drive the evolution of the Wrinkly Spreader. ISME J. 2011 Apr;5(4):665-73.  PubMed, PubMedCentral, CrossRef
  38. Kuśmierska A, Spiers AJ. New Insights into the Effects of Several Environmental Parameters on the Relative Fitness of a Numerically Dominant Class of Evolved Niche Specialist. Int J Evol Biol. 2016;2016:4846565.  PubMed, PubMed, CrossRef
  39. Day RL, Laland KN, Odling-Smee FJ. Rethinking adaptation: the niche-construction perspective. Perspect Biol Med. 2003 Winter;46(1):80-95. PubMed, CrossRef
  40. Huang WE, Ude S, Spiers AJ. Pseudomonas fluorescens SBW25 biofilm and planktonic cells have differentiable Raman spectral profiles. Microb Ecol. 2007 Apr;53(3):471-4. PubMed, CrossRef
  41. Van Valen L. A new evolutionary law. Evolution Theory. 1973; 1: 1-30.
  42. Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio. 2012 May 2;3(2). pii: e00036-12. PubMed, PubMedCentral, CrossRef
  43. Parsek MR, Greenberg EP. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 2005 Jan;13(1):27-33. PubMed, CrossRef
  44. West SA, Griffin AS, Gardner A, Diggle SP. Social evolution theory for microorganisms. Nat Rev Microbiol. 2006 Aug;4(8):597-607. PubMed, CrossRef
  45. Gehrig SM. Adaptation of Pseudomonas fluorescens SBW25 to the air-liquid interface: a study in evolutionary genetics. DPhil thesis, University of Oxford, Oxford, UK, 2005.
  46. Römling U. Molecular biology of cellulose production in bacteria. Res Microbiol. 2002 May;153(4):205-12. PubMed, CrossRef
  47. Saxena IM, Brown RM Jr. Cellulose biosynthesis: current views and evolving concepts. Ann Bot. 2005 Jul;96(1):9-21. PubMed, PubMedCentral, CrossRef
  48. Römling U, Galperin MY. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol. 2015 Sep;23(9):545-57. PubMed, PubMedCentral, CrossRef
  49. Spiers AJ, Bohannon J, Gehrig SM, Rainey PB. Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol. 2003 Oct;50(1):15-27. PubMed, CrossRef
  50. Franklin MJ, Douthit SA, McClure MA. Evidence that the algI/algJ gene cassette, required for O acetylation of Pseudomonas aeruginosa alginate, evolved by lateral gene transfer. J Bacteriol. 2004 Jul;186(14):4759-73. PubMed, PubMedCentral, CrossRef
  51. Arrebola E, Carrión VJ, Gutiérrez-Barranquero JA, Pérez-García A, Rodríguez-Palenzuela P, Cazorla FM, de Vicente A. Cellulose production in Pseudomonas syringae pv. syringae: a compromise between epiphytic and pathogenic lifestyles. FEMS Microbiol Ecol. 2015 Jul;91(7). pii: fiv071. PubMed   CrossRef
  52. McLaughlin K, Folorunso AO, Deeni YY, Foster D, Gorbatiuk O, Hapca SM, Immoor C, Koza A, Mohammed IU, Moshynets O, Rogalsky S, Zawadzki K, Spiers AJ. Biofilm formation and cellulose expression by Bordetella avium 197N, the causative agent of bordetellosis in birds and an opportunistic respiratory pathogen in humans. Res Microbiol. 2017 Jun;168(5):419-430. PubMed, CrossRef
  53. Moshynets OV, Koza A, Dello Sterpaio P, Kordium VA, Spiers AJ . Up-dating the Cholodny method using PET films to sample microbial communities in soil. Biopolym Cell. 2011;27(3):199–205.  CrossRef
  54. Spiers AJ, Rainey PB. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Microbiology. 2005 Sep;151(Pt 9):2829-39. PubMed, CrossRef
  55. Goymer P, Kahn SG, Malone JG, Gehrig SM, Spiers AJ, Rainey PB. Adaptive divergence in experimental populations of Pseudomonas fluorescens. II. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype. Genetics. 2006 Jun;173(2):515-26.  PubMed, PubMedCentral, CrossRef
  56. Bantinaki E, Kassen R, Knight CG, Robinson Z, Spiers AJ, Rainey PB. Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity. Genetics. 2007 May;176(1):441-53. PubMed, PubMedCentral, CrossRef
  57. Malone JG, Williams R, Christen M, Jenal U, Spiers AJ, Rainey PB. The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain. Microbiology. 2007 Apr;153(Pt 4):980-94. PubMed, CrossRef
  58. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature. 1987 Jan 15-21;325(6101):279-81. PubMed, CrossRef
  59. Römling U, Gomelsky M, Galperin MY. C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol. 2005 Aug;57(3):629-39. PubMed, CrossRef
  60. Jenal U, Malone J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet. 2006;40:385-407. PubMed, CrossRef
  61. Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol. 2009 Apr;7(4):263-73.  PubMedCrossRef
  62. Lin Chua S, Liu Y, Li Y, Jun Ting H, Kohli GS, Cai Z, Suwanchaikasem P, Kau Kit Goh K, Pin Ng S, Tolker-Nielsen T, Yang L, Givskov M. Reduced Intracellular c-di-GMP Content Increases Expression of Quorum Sensing-Regulated Genes in Pseudomonas aeruginosa. Front Cell Infect Microbiol. 2017 Oct 17;7:451. PubMed, PubMedCentral, CrossRef
  63. Moscoso JA, Jaeger T, Valentini M, Hui K, Jenal U, Filloux A. The diguanylate cyclase SadC is a central player in Gac/Rsm-mediated biofilm formation in Pseudomonas aeruginosa. J Bacteriol. 2014 Dec;196(23):4081-8.  PubMed, PubMedCentral, CrossRef
  64. Cheng X, de Bruijn I, van der Voort M, Loper JE, Raaijmakers JM. The Gac regulon of Pseudomonas fluorescens SBW25. Environ Microbiol Rep. 2013 Aug;5(4):608-19. PubMed, CrossRef
  65. McDonald MJ, Gehrig SM, Meintjes PL, Zhang XX, Rainey PB. Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation. Genetics. 2009 Nov;183(3):1041-53. PubMed, PubMedCentral, CrossRef
  66. McDonald MJ, Cooper TF, Beaumont HJ, Rainey PB. The distribution of fitness effects of new beneficial mutations in Pseudomonas fluorescens. Biol Lett. 2011 Feb 23;7(1):98-100. PubMed, PubMedCentral, CrossRef
  67. Koza A, Hallett PD, Moon CD, Spiers AJ. Characterization of a novel air-liquid interface biofilm of Pseudomonas fluorescens SBW25. Microbiology. 2009 May;155(Pt 5):1397-406. PubMed, CrossRef
  68. Lind PA, Farr AD, Rainey PB. Experimental evolution reveals hidden diversity in evolutionary pathways. eLife. 2015;4:e07074. PubMed, PubMedCentral, CrossRef
  69. Hottes AK, Freddolino PL, Khare A, Donnell ZN, Liu JC, Tavazoie S. Bacterial adaptation through loss of function. PLoS Genet. 2013;9(7):e1003617.
    PubMed, PubMedCentral, CrossRef
  70. Udall YC, Deeni Y, Hapca SM, Raikes D, Spiers AJ. The evolution of biofilm-forming Wrinkly Spreaders in static microcosms and drip-fed columns selects for subtle differences in wrinkleality and fitness. FEMS Microbiol Ecol. 2015 Jun;91(6). pii: fiv057. PubMed, CrossRef
  71. Gal M, Preston GM, Massey RC, Spiers AJ, Rainey PB. Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Mol Ecol. 2003 Nov;12(11):3109-21. PubMed, CrossRef
  72. Giddens SR, Jackson RW, Moon CD, Jacobs MA, Zhang XX, Gehrig SM, Rainey PB. Mutational activation of niche-specific genes provides insight into regulatory networks and bacterial function in a complex environment. Proc Natl Acad Sci USA. 2007 Nov 13;104(46):18247-52. PubMed, PubMedCentral, CrossRef
  73. Laue BE, Jiang Y, Chhabra SR, Jacob S, Stewart GS, Hardman A, Downie JA, O’Gara F, Williams P. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology. 2000 Oct;146(Pt 10):2469-80. PubMed, CrossRef
  74. Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol. 2001 Mar;67(3):1198-209.  PubMed, PubMedCentral, CrossRef
  75. Bassler BL, Losick R. Bacterially speaking. Cell. 2006 Apr 21;125(2):237-46. PubMed, CrossRef
  76. Wagner VE, Iglewski BH. P. aeruginosa Biofilms in CF Infection. Clin Rev Allergy Immunol. 2008 Dec;35(3):124-34. PubMed, CrossRef
  77. Ueda A, Wood TK. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog. 2009 Jun;5(6):e1000483. PubMed, PubMedCentral, CrossRef
  78. Malone JG, Jaeger T, Spangler C, Ritz D, Spang A, Arrieumerlou C, Kaever V, Landmann R, Jenal U. YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog. 2010 Mar 12;6(3):e1000804.  PubMed, PubMedCentralCrossRef
  79. Cha C, Gao P, Chen YC, Shaw PD, Farrand SK. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact. 1998 Nov;11(11):1119-29. PubMed, CrossRef
  80. Farrand SK, Qin Y, Oger P. Quorum-sensing system of Agrobacterium plasmids: analysis and utility. Methods Enzymol. 2002;358:452-84. PubMed, CrossRef
  81. Koveal D, Clarkson MW, Wood TK, Page R, Peti W. Ligand binding reduces conformational flexibility in the active site of tyrosine phosphatase related to biofilm formation A (TpbA) from Pseudomonas aeruginosa. J Mol Biol. 2013 Jun 26;425(12):2219-31. PubMed, PubMedCentral, CrossRef
  82. Hornung C, Poehlein A, Haack FS, Schmidt M, Dierking K, Pohlen A, Schulenburg H, Blokesch M, Plener L, Jung K, Bonge A, Krohn-Molt I, Utpatel C, Timmermann G, Spieck E, Pommerening-Röser A, Bode E, Bode HB, Daniel R, Schmeisser C, Streit WR. The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLoS One. 2013;8(2):e55045.  PubMed, PubMedCentral, CrossRef
  83. Tiaden A, Spirig T, Hilbi H. Bacterial gene regulation by α-hydroxyketone signaling. Trends Microbiol. 2010 Jul;18(7):288-97.  PubMed, CrossRef
  84. Sonnleitner E, Haas D. Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species. Appl Microbiol Biotechnol. 2011 Jul;91(1):63-79. PubMed, CrossRef
  85. Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015 Aug;13(8):497-508.  PubMed, CrossRef
  86. Rainey PB, Rainey K. Evolution of cooperation and conflict in experimental bacterial populations. Nature. 2003 Sep 4;425(6953):72-4. PubMed, CrossRef
  87. Popat R, Crusz SA, Messina M, Williams P, West SA, Diggle SP. Quorum-sensing and cheating in bacterial biofilms. Proc Biol Sci. 2012 Dec 7;279(1748):4765-71.  PubMed, PubMedCentral, CrossRef
  88. Xavier JB, Foster KR. Cooperation and conflict in microbial biofilms. Proc Natl Acad Sci USA. 2007 Jan 16;104(3):876-81. PubMed, PubMedCentral, CrossRef
  89. Baquero F, Lemonnier M. Generational coexistence and ancestor’s inhibition in bacterial populations. FEMS Microbiol Rev. 2009 Sep;33(5):958-67.  PubMed, CrossRef
  90. Tuckerman JR, Gonzalez G, Sousa EH, Wan X, Saito JA, Alam M, Gilles-Gonzalez MA. An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry. 2009 Oct 20;48(41):9764-74.  PubMed, CrossRef
  91. Hammond JH, Dolben EF, Smith TJ, Bhuju S, Hogan DA. Links between Anr and Quorum Sensing in Pseudomonas aeruginosa Biofilms. J Bacteriol. 2015 Sep;197(17):2810-20. PubMed, PubMedCentral, CrossRef
  92. Heurlier K, Dénervaud V, Haas D. Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int J Med Microbiol. 2006 Apr;296(2-3):93-102.  PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.