Ukr.Biochem.J. 2024; Volume 96, Issue 1, Jan-Feb, pp. 3-21
doi: https://doi.org/10.15407/ubj96.01.005
Phosphatidic acid formation and signaling in plant cells
Y. S. Kolesnikov, S. V. Kretynin, V. S. Kravets, Y. K. Bukhonska*
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry,
National Academy of Sciences of Ukraine, Kyiv;
*e-mail: yasya.yaroslavka@gmail.com
Received: 07 November 2023; Revised: 18 December 2023;
Accepted: 01 February 2024; Available on-line: 26 February 2024
This review conteins updated information on the structure, localization and regulation of phosphatidic acid (PA)-producing enzymes phospholipase D, phosphoinositide-specific and non-specific phospholipases C and diacylglycerol kinases is analyzed. The specific role of PA and PA-producing enzymes in plant stress signaling is discussed.
Keywords: diacylglycerol kinase, phosphatidic acid, phosphatidic acid-binding proteins, phospholipases D and C, plant cells, plant stress signaling
References:
- Kolesnikov Y, Kretynin S, Bukhonska Y, Pokotylo I, Ruelland E, Martinec J, Kravets V. Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations. Int J Mol Sci. 2022;23(6):3227. PubMed, PubMedCentral, CrossRef
- Yao S, Kim SC, Li J, Tang S, Wang X. Phosphatidic acid signaling and function in nuclei. Prog Lipid Res. 2024;93:101267. PubMed, PubMedCentral, CrossRef
- Vaz Dias F, Serrazina S, Vitorino M, Marchese D, Heilmann I, Godinho M, Rodrigues M, Malhó R. A role for diacylglycerol kinase 4 in signalling crosstalk during Arabidopsis pollen tube growth. New Phytol. 2019;222(3):1434-1446. PubMed, CrossRef
- Li T, Xiao X, Liu Q, Li W, Li L, Zhang W, Munnik T, Wang X, Zhang Q. Dynamic responses of PA to environmental stimuli imaged by a genetically encoded mobilizable fluorescent sensor. Plant Commun. 2023;4(3):100500. PubMed, PubMedCentral, CrossRef
- Guan B, Jiang YT, Lin DL, Lin WH, Xue HW. Phosphatidic acid suppresses autophagy through competitive inhibition by binding GAPC (glyceraldehyde-3-phosphate dehydrogenase) and PGK (phosphoglycerate kinase) proteins. Autophagy. 2022;18(11):2656-2670. PubMed, PubMedCentral, CrossRef
- Pandit S, Goel R, Mishra G. Phosphatidic acid binds to and stimulates the activity of ARGAH2 from Arabidopsis. Plant Physiol Biochem. 2022;185:344-355. PubMed, CrossRef
- Cao H, Gong R, Yuan S, Su Y, Lv W, Zhou Y, Zhang Q, Deng X, Tong P, Liang S, Wang X, Hong Y. Phospholipase Dα6 and phosphatidic acid regulate gibberellin signaling in rice. EMBO Rep. 2021;22(10):e51871. PubMed, PubMedCentral, CrossRef
- Takai Y, Hasi RY, Matsumoto N, Fujita C, Ali H, Hayashi J, Kawakami R, Aihara M, Ishikawa T, Imai H, Wakida M, Ando K, Tanaka T. Degradation of glycosylinositol phosphoceramide during plant tissue homogenization. J Biochem. 2023;175(1):115-124. PubMed, CrossRef
- Hu Z, Shi J, Feng S, Wu X, Shao S, Shi K. Plant N-acylethanolamines play a crucial role in defense and its variation in response to elevated CO2 and temperature in tomato. Hortic Res. 2022;10(1):uhac242. PubMed, PubMedCentral, CrossRef
- Zhang H, Yu Y, Wang S, Yang J, Ai X, Zhang N, Zhao X, Liu X, Zhong C, Yu H. Genome-wide characterization of phospholipase D family genes in allotetraploid peanut and its diploid progenitors revealed their crucial roles in growth and abiotic stress responses. Front Plant Sci. 2023;14:1102200. PubMed, PubMedCentral, CrossRef
- Fang S, Han X, Yuan P, Song C, Song S, Jiao J, Wang M, Zheng X, Bai T. Genome-wide analysis of the apple PLD gene family and a functional characterization of MdPLD17 in drought tolerance. Sci Horticult. 2023;321:112311. CrossRef
- Wei J, Shao W, Liu X, He L, Zhao C, Yu G, Xu J. Genome-wide identification and expression analysis of phospholipase D gene in leaves of sorghum in response to abiotic stresses. Physiol Mol Biol Plants. 2022;28(6):1261-1276. PubMed, PubMedCentral, CrossRef
- Sadat MA, Ullah MW, Hossain MS, Ahmed B, Bashar KK. Genome-wide in silico identification of phospholipase D (PLD) gene family from Corchorus capsularis and Corchorus olitorius: reveals their responses to plant stress. J Genet Eng Biotechnol. 2022;20(1):28. PubMed, PubMedCentral, CrossRef
- Yuan Y, Yu J, Kong L, Zhang W, Hou X, Cui G. Genome-wide investigation of the PLD gene family in alfalfa (Medicago sativa L.): identification, analysis and expression. BMC Genomics. 2022;23(1):243. PubMed, PubMedCentral, CrossRef
- Laureano G, Santos C, Gouveia C, Matos AR, Figueiredo A. Grapevine-associated lipid signalling is specifically activated in an Rpv3 background in response to an aggressive P. viticola Pathovar. Cells. 2023;12(3):394 PubMed, PubMedCentral, CrossRef
- Hong K, Zhang L, Zhan R, Huang B, Song K, Jia Z. Identification and characterization of phospholipase D genes putatively involved in internal browning of pineapple during postharvest storage. Front Plant Sci. 2017;8:913. PubMed, PubMedCentral, CrossRef
- Pejchar P, Sekereš J, Novotný O, Žárský V, Potocký M. Functional analysis of phospholipase Dδ family in tobacco pollen tubes. Plant J. 2020;103(1):212-226. PubMed, CrossRef
- Liu P, Gu J, Cui X, Fu H, Wang F, Qi M, Sun Z, Li T, Liu Y. Genome-wide investigation of the phospholipase C gene family in Solanum lycopersicum and abiotic stress analysis. Environ Exp Bot. 2023;210:105336. CrossRef
- Zhu J, Zhou Y, Li J, Li H. Genome-wide investigation of the phospholipase C gene family in Zea mays. Front Genet. 2021;11:611414. PubMed, PubMedCentral, CrossRef
- Zhu L, Dou L, Shang H, Li H, Yu J, Xiao G. GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. iScience. 2021;24(3):102199. PubMed, PubMedCentral, CrossRef
- Fan R, Zhao F, Gong Z, Chen Y, Yang B, Zhou C, Zhang J, Du Z, Wang X, Yin P, Guo L, Liu Z. Insights into the mechanism of phospholipid hydrolysis by plant non-specific phospholipase C. Nat Commun. 2023;14(1):194. PubMed, PubMedCentral, CrossRef
- Kanchan M, Ramkumar TR, Himani, Sembi JK. Genome-wide characterization and expression profiling of the Phospholipase C (PLC) gene family in three orchids of economic importance. J Genet Eng Biotechnol. 2021;19(1):124. PubMed, PubMedCentral, CrossRef
- Yeken MZ, Özer G, Çiftçi V. Genome-wide identification and expression analysis of DGK (Diacylglycerol Kinase) genes in common bean. J Plant Growth Regul. 2023;42:2558-2569. CrossRef
- Tang F, Xiao Z, Sun F, Shen S, Chen S, Chen R, Zhu M, Zhang Q, Du H, Lu K, Li J, Qu C. Genome-wide identification and comparative analysis of diacylglycerol kinase (DGK) gene family and their expression profiling in Brassica napus under abiotic stress. BMC Plant Biol. 2020;20(1):473.
PubMed, PubMedCentral, CrossRef - Ge H, Chen C, Jing W, Zhang Q, Wang H, Wang R, Zhang W. The rice diacylglycerol kinase family: functional analysis using transient RNA interference. Front Plant Sci. 2012;3:60. PubMed, PubMedCentral, CrossRef
- Carther KF, Ketehouli T, Ye N, Yang YH, Wang N, Dong YY, Yao N, Liu XM, Liu WC, Li XW, Wang FW, Li HY. Comprehensive genomic analysis and expressionprofiling of diacylglycerol kinase (DGK) gene family in soybean (Glycine max) under abiotic stresses. Int J Mol Sci. 2019;20(6):1361. PubMed, PubMedCentral, CrossRef
- Zhang G, Yang J, Chen X, Zhao D, Zhou X, Zhang Y, Wang X, Zhao J. Phospholipase D- and phosphatidic acid-mediated phospholipid metabolism and signaling modulate symbiotic interaction and nodulation in soybean (Glycine max). Plant J. 2021;106(1):142-158. PubMed, CrossRef
- Ma C, Zhang Q, Lv J, Qiao K, Fan S, Ma Q, Zhang C. Genome-wide analysis of the phospholipase D family in five cotton species, and potential role of GhPLD2 in fiber development and anther dehiscence. Front Plant Sci. 2021;12:728025. PubMed, PubMedCentral, CrossRef
- Cao H, Liu Q, Liu X, Ma Z, Zhang J, Li X, Shen L, Yuan J, Zhang Q. Phosphatidic acid regulates ammonium uptake by interacting with AMMONIUM TRANSPORTER 1;1 in Arabidopsis. Plant Physiol. 2023;193(3):1954-1969. PubMed, CrossRef
- Xing J, Li X, Wang X, Lv X, Wang L, Zhang L, Zhu Y, Shen Q, Baluška F, Šamaj J, Lin J. Secretion of phospholipase Dδ functions as a regulatory mechanism in plant innate immunity. Plant Cell. 2019;31(12):3015-3032. PubMed, PubMedCentral, CrossRef
- Shimamura R, Ohashi Y, Taniguchi YY, Kato M, Tsuge T, Aoyama T. Arabidopsis PLDζ1 and PLDζ2 localize to post-Golgi membrane compartments in a partially overlapping manner. Plant Mol Biol. 2022;108(1-2):31-49. PubMed, CrossRef
- Schlöffel MA, Salzer A, Wan W., van Wijk R, Šemanjski M, Symeonidi E, Slaby P, Kilian J, Maček B, Munnik T, Gust AA. The BIR2/BIR3-interacting phospholipase D gamma 1 negatively regulates plant immunity. Plant Physiol. 2019;183(1):371-384. CrossRef
- Ying S, Scheible WR, Lundquist PK. A stress-inducible protein regulates drought tolerance and flowering time in Brachypodium and Arabidopsis. Plant Physiol. 2023;191(1):643-659. PubMed, PubMedCentral, CrossRef
- Zhang K, Shi W, Zheng X, Liu X, Wang L, Riemann M, Heintz D, Nick P. A rice tubulin tyrosine ligase like 12 regulates phospholipase D activity and tubulin synthesis. Plant Sci. 2022;316:111155. PubMed, CrossRef
- Zhang X, Tang H, Du H, Liu Z, Bao Z, Shi Q. Comparative N-glycoproteome analysis provides novel insights into the regulation mechanism in tomato (solanum lycopersicum L.) During fruit ripening process. Plant Sci. 2020;293:110413. PubMed, CrossRef
- Lin J, Zhao J, Du L, Wang P, Sun B, Zhang C, Shi Y, Li H, Sun H. Activation of MAPK-mediated immunity by phosphatidic acid in response to positive-strand RNA viruses. Plant Commun. 2024;5(1):100659. PubMed, CrossRef
- Zhang Y, Liu R, Zhou Y, Wang S, Zhang B, Kong J, Zheng S, Yang N. PLDα1 and GPA1 are involved in the stomatal closure induced by Oridonin in Arabidopsis thaliana. Funct Plant Biol. 2021;48(10):1005-1016. PubMed, CrossRef
- Yang J, Zheng Q, Wang Y, Wu T, Li W, Qiu C, Xu X, Zhang X, Han Z, Zhang X. GSH-dependent PTMs of proteins differ significantly between ontogenetic phases of apple trees. J Plant Growth Regul. 2023;42:3405-3418. CrossRef
- Nounurai P, Afifah A, Kittisenachai S, Roytrakul S. Phosphorylation of CAD1, PLDdelta, NDT1, RPM1 Proteins Induce Resistance in Tomatoes Infected by Ralstonia solanacearum. Plants (Basel). 2022;11(6):726. PubMed, PubMedCentral, CrossRef
- Zhou Y, Zhou DM, Yu WW, Shi LL, Zhang Y, Lai YX, Huang LP, Qi H, Chen QF, Yao N, Li JF, Xie LJ, Xiao S. Phosphatidic acid modulates MPK3- and MPK6-mediated hypoxia signaling in Arabidopsis. Plant Cell. 2022;34(2):889-909. PubMed, PubMedCentral, CrossRef
- Amagai A, Honda Y, Ishikawa S, Hara Y, Kuwamura M, Shinozawa A, Sugiyama N, Ishihama Y, Takezawa D, Sakata Y, Shinozaki K, Umezawa T. Phosphoproteomic profiling reveals ABA-responsive phosphosignaling pathways in Physcomitrella patens. Plant J. 2018;94(4):699-708. PubMed, CrossRef
- Shinozawa A, Otake R, Takezawa D, Umezawa T, Komatsu K, Tanaka K, Amagai A, Ishikawa S, Hara Y, Kamisugi Y, Cuming AC, Hori K, Ohta H, Takahashi F, Shinozaki K, Hayashi T, Taji T, Sakata Y. SnRK2 protein kinases represent an ancient system in plants for adaptation to a terrestrial environment. Commun Biol. 2019;2:30. PubMed, PubMedCentral, CrossRef
- Hsu CC, Zhu Y, Arrington JV, Paez JS, Wang P, Zhu P, Chen IH, Zhu JK, Tao WA. Universal plant phosphoproteomics workflow and its application to tomato signaling in response to cold stress. Mol Cell Proteomics. 2018;17(10):2068-2080. PubMed, PubMedCentral, CrossRef
- Wang C, Guo H, He X, Zhang S, Wang J, Wang L, Guo D, Guo X. Scaffold protein GhMORG1 enhances the resistance of cotton to Fusarium oxysporum by facilitating the MKK6-MPK4 cascade. Plant Biotechnol J. 2020;18(6):1421-1433. PubMed, PubMedCentral, CrossRef
- Heidari P, Puresmaeli F, Vafaee Y, Ahmadizadeh M, Ensani M, Ahmadinia H. Comparative analysis of phospholipase D (PLD) gene family in Camelina sativa and Brassica napus and its responses in camelina seedlings under salt stress. Agronomy. 2023;13(10):2616. CrossRef
- Chen X, Xu Q, Duan Y, Liu H, Chen X, Huang J, Luo C, Zhou DX, Zheng L. Ustilaginoidea virens modulates lysine 2-hydroxyisobutyrylation in rice flowers during infection. J Integr Plant Biol. 2021;63(10):1801-1814. PubMed, CrossRef
- Pan C, Li X, Yao S, Luo S, Liu S, Wang A, Xiao D, Zhan J, He L. S-nitrosated proteomic analysis reveals the regulatory roles of protein S-nitrosation and S-nitrosoglutathione reductase during Al-induced PCD in peanut root tips. Plant Sci. 2021;308:110931. PubMed, CrossRef
- Liao X, Li Y, Hu Z, Lin Y, Zheng B, Ding J. Poplar acetylome profiling reveals lysine acetylation dynamics in seasonal bud dormancy release. Plant Cell Environ. 2021;44(6):1830-1845. PubMed, CrossRef
- Song P, Jia Q, Chen L, Jin X, Xiao X, Li L, Chen H, Qu Y, Su Y, Zhang W, Zhang Q. Involvement of Arabidopsis phospholipase D δ in regulation of ROS-mediated microtubule organization and stomatal movement upon heat shock. J Exp Bot. 2020;71(20):6555-6570. PubMed, CrossRef
- Wilmowicz E, Kućko A, Pokora W, Kapusta M, Jasieniecka-Gazarkiewicz K, Tranbarger TJ, Wolska M, Panek K. EPIP-evoked modifications of redox, lipid, and pectin homeostasis in the abscission zone of lupine flowers. Int J Mol Sci. 2021;22(6):3001. PubMed, PubMedCentral, CrossRef
- Ribeiro DG, Bezerra AC, Santos IR, Grynberg P, Fontes W, de Souza Castro M, de Sousa MV, Lisei-de-Sá ME, Grossi-de-Sá MF, Franco OL, Mehta A. Proteomic insights of cowpea response to combined biotic and abiotic stresses. Plants (Basel). 2023;12(9):1900. PubMed, PubMedCentral, CrossRef
- Prasad K, Yogendra K, Sanivarapu H, Rajasekaran K, Cary JW, Sharma KK, Bhatnagar-Mathur P. Multiplexed host-induced gene silencing of Aspergillus flavus genes confers aflatoxin resistance in groundnut. Toxins (Basel). 2023;15(5):319. PubMed, PubMedCentral, CrossRef
- Oblozinsky M, Bezakova L, Mansfeld J, Heilmann I, Ulbrich-Hofmann R. Differences in the effect of phosphatidylinositol 4,5-bisphosphate on the hydrolytic and transphosphatidylation activities of membrane-bound phospholipase D from poppy seedlings. Plant Physiol Biochem. 2013;69:39-42. PubMed, CrossRef
- Deng X, Yuan S, Cao H, Lam SM, Shui G, Hong Y, Wang X. Phosphatidylinositol-hydrolyzing phospholipase C4 modulates rice response to salt and drought. Plant Cell Environ. 2019;42(2):536-548. PubMed, CrossRef
- Yu M, Cao C, Yin X, Liu X, Yang D, Gong C, Wang H, Wu Y. The rice phosphoinositide-specific phospholipase C3 is involved in responses to osmotic stresses via modulating ROS homeostasis. Plant Sci. 2021;313:111087. PubMed, CrossRef
- Sagar S, Biswas DK, Singh A. Genomic and expression analysis indicate the involvement of phospholipase C family in abiotic stress signaling in chickpea (Cicer arietinum). Gene. 2020;753:144797. PubMed, PubMedCentral, CrossRef
- Li L, Wang F, Yan P, Jing W, Zhang C, Kudla J, Zhang W. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca2+ signals and confers salt tolerance to rice. New Phytol. 2017;214(3):1172-1187. PubMed, CrossRef
- Wu Q, Fan Z, Qi F, Li D, Zhang Z, Chen Y, Huang Y, Lin Y, Lai Z. Genome-wide identification, evolution analysis of PI-PLC family and their expression patterns in response to different hormones and growth in banana (Musa L.). Trop Plant Biol. 2023;16:187-198 CrossRef
- Kong J, Chen R, Liu R, Wang W, Wang S, Zhang J, Yang N. PLC1 mediated Cycloastragenol-induced stomatal movement by regulating the production of NO in Arabidopsis thaliana. BMC Plant Biol. 2023;23(1):571. PubMed, PubMedCentral, CrossRef
- Marques DN, Stolze SC, Harzen A, Nogueira ML, Batagin-Piotto KD, Piotto FA, Mason C, Azevedo RA, Nakagami H. Comparative phosphoproteomic analysis of tomato genotypes with contrasting cadmium tolerance. Plant Cell Rep. 2021;40(10):2001-2008. PubMed, CrossRef
- Lu ZS, Chen QS, Zheng QX, Shen JJ, Luo ZP, Fan K, Xu SH, Shen Q, Liu PP. Proteomic and phosphoproteomic analysis in tobacco mosaic virus-infected tobacco (Nicotiana tabacum). Biomolecules. 2019;9(2):39. PubMed, PubMedCentral, CrossRef
- Liu Z, Lv J, Liu Y, Wang J, Zhang Z, Chen W, Song J, Yang B, Tan F, Zou X, Ou L. Comprehensive phosphoproteomic analysis of pepper fruit development provides insight into plant signaling transduction. Int J Mol Sci. 2020;21(6):1962. PubMed, PubMedCentral, CrossRef
- Han R, Wei Y, Xie Y, Liu L, Jiang C, Yu Y. Quantitative phosphoproteomic analysis provides insights into the aluminum-responsiveness of Tamba black soybean. PLoS One. 2020;15(8):e0237845. PubMed, PubMedCentral, CrossRef
- Smith S, Zhu S, Joos L, Roberts I, Nikonorova N, Vu LD, Stes E, Cho H, Larrieu A, Xuan W, Goodall B, van de Cotte B, Waite JM, Rigal A, Ramans Harborough S, Persiau G, Vanneste S, Kirschner GK, Vandermarliere E, Martens L, Stahl Y, Audenaert D, Friml J, Felix G, Simon R, Bennett MJ, Bishopp A, De Jaeger G, Ljung K, Kepinski S, Robert S, Nemhauser J, Hwang I, Gevaert K, Beeckman T, De Smet I. The CEP5 Peptide Promotes Abiotic Stress Tolerance, As Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis. Mol Cell Proteomics. 2020;19(8):1248-1262. PubMed, PubMedCentral, CrossRef
- Sun J, Qiu C, Qian W, Wang Y, Sun L, Li Y, Ding Z. Ammonium triggered the response mechanism of lysine crotonylome in tea plants. BMC Genomics. 2019;20(1):340. PubMed, PubMedCentral, CrossRef
- Li Q, Zhang Y, Huang J, Wu Z, Tang L, Huang L, Zhang X. Basic strong cation exchange chromatography, BaSCX, a highly efficient approach for C-terminomic studies using lysargiNase digestion. Anal Chem. 2020;92(7):4742-4748. PubMed, CrossRef
- Wang N, Shi Y, Jiang Q, Li H, Fan W, Feng Y, Li L, Liu B, Lin F, Jing W, Zhang W, Shen L. A 14-3-3 protein positively regulates rice salt tolerance by stabilizing phospholipase C1. Plant Cell Environ. 2023;46(4):1232-1248. PubMed, CrossRef
- Bovin AD, Pavlova OA, Dolgikh AV, Leppyanen IV, Dolgikh EA. The role of heterotrimeric G-protein beta subunits during nodulation in Medicago truncatula Gaertn and Pisum sativum L. Front Plant Sci. 2022;12:808573. PubMed, PubMedCentral, CrossRef
- She J, Yan H, Yang J, Xu W, Su Z. croFGD: Catharanthus roseus functional genomics database. Front Genet. 2019;10:238. PubMed, PubMedCentral, CrossRef
- Abd-El-Haliem AM, Vossen JH, van Zeijl A, Dezhsetan S, Testerink C, Seidl MF, Beck M, Strutt J, Robatzek S, Joosten MHAJ. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity. Biochim Biophys Acta. 2016;1861(9 Pt B):1365-1378. PubMed, CrossRef
- Ruelland E, Cantrel C, Gawer M, Kader JC, Zachowski A. Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol. 2002;130(2):999-1007. PubMed, PubMedCentral, CrossRef
- Yan H, Mao P. Comparative time-course physiological responses and proteomic analysis of melatonin priming on promoting germination in aged oat (Avena sativa L.) seeds. Int J Mol Sci. 2021;22(2):811. PubMed, PubMedCentral, CrossRef
- Delage E, Ruelland E, Guillas I, Zachowski A, Puyaubert J. Arabidopsis type-III phosphatidylinositol 4-kinases β1 and β2 are upstream of the phospholipase C pathway triggered by cold exposure. Plant Cell Physiol. 2012;53(3):565-576. PubMed, CrossRef
- Yang D, Liu X, Yin X, Dong T, Yu M, Wu Y. Rice non-specific phospholipase C6 is involved in mesocotyl elongation. Plant Cell Physiol. 2021;62(6):985-1000. PubMed, CrossRef
- Hasi RY, Ishikawa T, Sunagawa K, Takai Y, Ali H, Hayashi J, Kawakami R, Yuasa K, Aihara M, Kanemaru K, Imai H, Tanaka T. Nonspecific phospholipase C3 of radish has phospholipase D activity towards glycosylinositol phosphoceramide. FEBS Lett. 2022;596(23):3024-3036. PubMed, CrossRef
- Cai G, Fan C, Liu S, Yang Q, Liu D, Wu J, Li J, Zhou Y, Guo L, Wang X. Nonspecific phospholipase C6 increases seed oil production in oilseed Brassicaceae plants. New Phytol. 2020;226(4):1055-1073. PubMed, CrossRef
- Song J, Zhou Y, Zhang J, Zhang K. Structural, expression and evolutionary analysis of the non-specific phospholipase C gene family in Gossypium hirsutum. BMC Genomics. 2017;18(1):979. PubMed, PubMedCentral, CrossRef
- Li L, Li N, Qi X, Bai Y, Chen Q, Fang H, Yu X, Liu D, Liang C, Zhou Y. Characterization of the Glehnia littoralis Non-specific Phospholipase C Gene GlNPC3 and Its Involvement in the Salt Stress Response. Front Plant Sci. 2021;12:769599. PubMed, PubMedCentral, CrossRef
- Wang K, Li YL, Chen S. Genome-wide identification of phospholipase C related to chilling injury in peach fruit. J Plant Biochem Biotechnol. 2021;30:452-461. CrossRef
- Krčková Z, Kocourková D, Daněk M, Brouzdová J, Pejchar P, Janda M, Pokotylo I, Ott PG, Valentová O, Martinec J. The Arabidopsis thaliana non-specific phospholipase C2 is involved in the response to Pseudomonas syringae attack. Ann Bot. 2018;121(2):297-310. PubMed, PubMedCentral, CrossRef
- Yang B, Zhang K, Jin X, Yan J, Lu S, Shen Q, Guo L, Hong Y, Wang X, Guo L. Acylation of non-specific phospholipase C4 determines its function in plant response to phosphate deficiency. Plant J. 2021;106(6):1647-1659. PubMed, CrossRef
- Jia X, Si X, Jia Y, Zhang H, Tian S, Li W, Zhang K, Pan Y. Genomic profiling and expression analysis of the diacylglycerol kinase gene family in heterologous hexaploid wheat. PeerJ. 2021;9:e12480. PubMed, PubMedCentral, CrossRef
- Platre MP, Noack LC, Doumane M, Bayle V, Simon MLA, Maneta-Peyret L, Fouillen L, Stanislas T, Armengot L, Pejchar P, Caillaud MC, Potocký M, Čopič A, Moreau P, Jaillais Y. A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes. Dev Cell. 2018;45(4):465-480.e11.
PubMed, CrossRef - Angkawijaya AE, Nguyen VC, Gunawan F, Nakamura Y. A Pair of Arabidopsis diacylglycerol kinases essential for gametogenesis and endoplasmic reticulum phospholipid metabolism in leaves and flowers. Plant Cell. 2020;32(8):2602-2620. PubMed, PubMedCentral, CrossRef
- Tan WJ, Yang YC, Zhou Y, Huang LP, Xu L, Chen QF, Yu LJ, Xiao S. DIACYLGLYCEROL ACYLTRANSFERASE and DIACYLGLYCEROL KINASE Modulate Triacylglycerol and Phosphatidic Acid Production in the Plant Response to Freezing Stress. Plant Physiol. 2018;177(3):1303-1318.
PubMed, PubMedCentral, CrossRef - Scholz P, Pejchar P, Fernkorn M, Škrabálková E, Pleskot R, Blersch K, Munnik T, Potocký M, Ischebeck T. DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. New Phytol. 2022;233(5):2185-2202. PubMed, CrossRef
- Li Y, Tan Y, Shao Y, Li M, Ma F. Comprehensive genomic analysis and expression profiling of diacylglycerol kinase gene family in Malus prunifolia (Willd.) Borkh. Gene. 2015;561(2):225-234. PubMed, CrossRef
- Song J, Shang L, Wang X, Xing Y, Xu W, Zhang Y, Wang T, Li H, Zhang J, Ye Z. MAPK11 regulates seed germination and ABA signaling in tomato by phosphorylating SnRKs. J Exp Bot. 2021;72(5):1677-1690. PubMed, CrossRef
- Haj Ahmad F, Wu XN, Stintzi A, Schaller A, Schulze WX. The systemin signaling cascade as derived from time course analyses of the systemin-responsive phosphoproteome. Mol Cell Proteomics. 2019;18(8):1526-1542. PubMed, PubMedCentral, CrossRef
- Chen Q, Qu M, Chen Q, Meng X, Fan H. Phosphoproteomics analysis of the effect of target of rapamycin kinase inhibition on Cucumis sativus in response to Podosphaera xanthii. Plant Physiol Biochem. 2023;197:107641. PubMed, CrossRef
- Qin X, Li P, Lu S, Sun Y, Meng L, Hao J, Fan S. Phosphoproteomic analysis of lettuce (Lactuca sativa L.) reveals starch and sucrose metabolism functions during bolting induced by high temperature. PLoS One. 2020;15(12):e0244198. PubMed, PubMedCentral, CrossRef
- Zhou Q, Meng Q, Tan X, Ding W, Ma K, Xu Z, Huang X, Gao H. Protein phosphorylation changes during systemic acquired resistance in Arabidopsis thaliana. Front Plant Sci. 2021;12:748287. PubMed, PubMedCentral, CrossRef
- Kong XX, Mei JW, Zhang J, Liu X, Wu JY, Wang CL. Turnover of diacylglycerol kinase 4 by cytoplasmic acidification induces vacuole morphological change and nuclear DNA degradation in the early stage of pear self-incompatibility response. J Integr Plant Biol. 2021;63(12):2123-2135. PubMed, CrossRef
- Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar SP. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci USA. 2007;104(11):4730-4735. PubMed, PubMedCentral, CrossRef
- Altmann M, Altmann S, Rodriguez PA, Weller B, Elorduy Vergara L, Palme J, Marín-de la Rosa N, Sauer M, Wenig M, Villaécija-Aguilar JA, Sales J, Lin CW, Pandiarajan R, Young V, Strobel A, Gross L, Carbonnel S, Kugler KG, Garcia-Molina A, Bassel GW, Falter C, Mayer KFX, Gutjahr C, Vlot AC, Grill E, Falter-Braun P. Extensive signal integration by the phytohormone protein network. Nature. 2020;583(7815):271-276. PubMed, CrossRef
- Arabidopsis Interactome Mapping Consortium. Evidence for network evolution in an Arabidopsis interactome map. Science. 2011;333(6042):601-607. PubMed, PubMedCentral, CrossRef
- Cacas JL, Gerbeau-Pissot P, Fromentin J, Cantrel C, Thomas D, Jeannette E, Kalachova T, Mongrand S, Simon-Plas F, Ruelland E. Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein. Plant Cell Environ. 2017;40(4):585-598. PubMed, PubMedCentral, CrossRef
- Kalachova T, Škrabálková E, Pateyron S, Soubigou-Taconnat L, Djafi N, Collin S, Sekereš J, Burketová L, Potocký M, Pejchar P, Ruelland E. DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis. Plant Physiol. 2022;190(3):1978-1996. PubMed, PubMedCentral, CrossRef
- Janda M, Planchais S, Djafi N, Martinec J, Burketova L, Valentova O, Zachowski A, Ruelland E. Phosphoglycerolipids are master players in plant hormone signal transduction. Plant Cell Rep. 2013;32(6):839-851. PubMed, CrossRef
- van Hooren M, Darwish E, Munnik T. Stress- and phospholipid signalling responses in Arabidopsis PLC4-KO and -overexpression lines under salt- and osmotic stress. Phytochemistry. 2023;216:113862. PubMed, CrossRef
- Johansson ON, Fahlberg P, Karimi E, Nilsson AK, Ellerström M, Andersson MX. Redundancy among phospholipase D isoforms in resistance triggered by recognition of the Pseudomonas syringae effector AvrRpm1 in Arabidopsis thaliana. Front Plant Sci. 2014;5:639. PubMed, PubMedCentral, CrossRef
- Janda M, Ježková L, Nováková M, Valentová O, Burketová L, Šašek V. Identification of phospholipase D genes in Brassica napus and their transcription after phytohormone treatment and pathogen infection. Biol Plant. 2015;59:581-590. CrossRef
- Wang H, Yan Z, Yang M, Gu L. Genome-wide identification and characterization of the diacylglycerol kinase (DGK) gene family in Populus trichocarpa. Physiol Mol Plant Pathol. 2023;127:102121. CrossRef
- Li J, Wang J, Pang Q, Yan X. Analysis of N6-methyladenosine reveals a new important mechanism regulating the salt tolerance of sugar beet (Beta vulgaris). Plant Sci. 2023;335:111794. PubMed, CrossRef
- Ben Othman A, Ellouzi H, Planchais S, De Vos D, Faiyue B, Carol P, Abdelly C, Savouré A. Phospholipases Dζ1 and Dζ2 have distinct roles in growth and antioxidant systems in Arabidopsis thaliana responding to salt stress. Planta. 2017;246(4):721-735. PubMed, CrossRef
- Galvan-Ampudia CS, Julkowska MM, Darwish E, Gandullo J, Korver RA, Brunoud G, Haring MA, Munnik T, Vernoux T, Testerink C. Halotropism is a response of plant roots to avoid a saline environment. Curr Biol. 2013;23(20):2044-2050. PubMed, CrossRef
- Kocourková D, Krčková Z, Pejchar P, Veselková Š, Valentová O, Wimalasekera R, Scherer GFE, Martinec J. The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J Exp Bot. 2011;62(11):3753-3763. PubMed, PubMedCentral, CrossRef
- Zhang Q, Lin F, Mao T, Nie J, Yan M, Yuan M, Zhang W. Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell. 2012;24(11):4555-4576. PubMed, PubMedCentral, CrossRef
- Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 2010;188(3):762-773. PubMed, CrossRef
- Wang P, Shen L, Guo J, Jing W, Qu Y, Li W, Bi R, Xuan W, Zhang Q, Zhang W. Phosphatidic acid directly regulates PINOID-dependent phosphorylation and activation of the PIN-FORMED2 auxin efflux transporter in response to salt stress. Plant Cell. 2019;31(1):250-271. PubMed, PubMedCentral, CrossRef
- Shen L, Zhuang B, Wu Q, Zhang H, Nie J, Jing W, Yang L, Zhang W. Phosphatidic acid promotes the activation and plasma membrane localization of MKK7 and MKK9 in response to salt stress. Plant Sci. 2019;287:110190. PubMed, CrossRef
- Im JH, Lee H, Kim J, Kim HB, Seyoung K, Kim BM, An CS. A salt stress-activated mitogen-activated protein kinase in soybean is regulated by phosphatidic acid in early stages of the stress response. J Plant Biol. 2012;55:303-309. CrossRef
- Im JH, Lee H Kim J, Kim HB, An CS. Soybean MAPK, GMK1 is dually regulated by phosphatidic acid and hydrogen peroxide and translocated to nucleus during salt stress. Mol Cells. 2012;34(3):271-278. PubMed, PubMedCentral, CrossRef
- Li J, Shen L, Han X, He G, Fan W, Li Y, Yang S, Zhang Z, Yang Y, Jin W, Wang Y, Zhang W, Guo Y. Phosphatidic acid-regulated SOS2 controls sodium and potassium homeostasis in Arabidopsis under salt stress. EMBO J. 2023;42(8):e112401. PubMed, PubMedCentral, CrossRef
- McLoughlin F, Arisz Steven A, Dekker Henk L, Kramer G, de Koster Chris G, Haring Michel A, Munnik T, Testerink C. Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem J. 2013;450(3):573-581. PubMed, CrossRef
- Korver RA, van den Berg T, Meyer AJ, Galvan-Ampudia CS, ten Tusscher KHWJ, Testerink C. Halotropism requires phospholipase Dζ1-mediated modulation of cellular polarity of auxin transport carriers. Plant Cell Environ. 2020;43(1):143-158. PubMed, PubMedCentral, CrossRef
- Huo C, Zhang B, Wang H, Wang F, Liu M, Gao Y, Zhang W, Deng Z, Sun D, Tang W. Comparative study of early cold-regulated proteins by two-dimensional difference gel electrophoresis reveals a key role for phospholipase Dα1 in mediating cold acclimation signaling pathway in rice. Mol Cell Proteomics. 2016;15(4):1397-1411. PubMed, PubMedCentral, CrossRef
- Kim SC, Yao S, Zhang Q, Wang X. Phospholipase Dδ and phosphatidic acid mediate heat-induced nuclear localization of glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. Plant J. 2022;112(3):786-799. PubMed, PubMedCentral, CrossRef
- Annum N, Ahmed M, Imtiaz K, Mansoor S, Tester M, Saeed NA. 32Pi Labeled Transgenic Wheat Shows the Accumulation of Phosphatidylinositol 4,5-bisphosphate and Phosphatidic Acid Under Heat and Osmotic Stress. Front Plant Sci. 2022;13:881188. PubMed, PubMedCentral, CrossRef
- Mishkind M, Vermeer JEM, Darwish E, Munnik T. Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus. Plant J. 2009;60(1):10-21. PubMed, CrossRef
- Krčková Z, Brouzdová J, Daněk M, Kocourková D, Rainteau D, Ruelland E, Valentová O, Pejchar P, Martinec J. Arabidopsis non-specific phospholipase C1: characterization and its involvement in response to heat stress. Front Plant Sci. 2015;6:928.
PubMed, PubMedCentral, CrossRef - Klimecka M, Szczegielniak J, Godecka L, Lewandowska-Gnatowska E, Dobrowolska G, Muszyńska G. Regulation of wound-responsive calcium-dependent protein kinase from maize (ZmCPK11) by phosphatidic acid. Acta Biochim Pol. 2011;58(4):589-595. PubMed
- Bourtsala A, Farmaki T, Galanopoulou D. Phospholipases Dα and δ are involved in local and systemic wound responses of cotton (G. hirsutum). Biochem Biophys Rep. 2016;9:133-139. PubMed, PubMedCentral, CrossRef
- Premkumar A, Lindberg S, Lager I, Rasmussen U, Schulz A. Arabidopsis PLDs with C2-domain function distinctively in hypoxia. Physiol Plant. 2019;167(1):90-110. PubMed, cr id=”https://doi.org/10.1111/ppl.12874″]
- Lindberg S, Premkumar A, Rasmussen U, Schulz A, Lager I. Phospholipases AtPLDζ1 and AtPLDζ2 function differently in hypoxia. Physiol Plant. 2018;162(1):98-108. PubMed, CrossRef
- Fan B, Liao K, Wang LN, Shi LL, Zhang Y, Xu LJ, Zhou Y, Li JF, Chen YQ, Chen QF, Xiao S. Calcium-dependent activation of CPK12 facilitates its cytoplasm-to-nucleus translocation to potentiate plant hypoxia sensing by phosphorylating ERF-VII transcription factors. Mol Plant. 2023;16(6):979-998. PubMed, CrossRef
- Anthony RG, Khan S, Costa J, Pais MS, Bögre L. The Arabidopsis protein kinase PTI1-2 is activated by convergent phosphatidic acid and oxidative stress signaling pathways downstream of PDK1 and OXI1. J Biol Chem. 2006;281(49):37536-37546. PubMed, CrossRef
- Li J, Henty-Ridilla JL, Staiger BH, Day B, Staiger CJ. Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity. Nat Commun. 2015;6:7206. PubMed, PubMedCentral, CrossRef
- Pinosa F, Buhot N, Kwaaitaal M, Fahlberg P, Thordal-Christensen H, Ellerström M, Andersson MX. Arabidopsis phospholipase dδ is involved in basal defense and nonhost resistance to powdery mildew fungi. Plant Physiol. 2013;163(2):896-906. PubMed, PubMedCentral, CrossRef
- D’Ambrosio JM, Couto D, Fabro G, Scuffi D, Lamattina L, Munnik T, Andersson MX, Álvarez ME, Zipfel C, Laxalt AM. Phospholipase C2 Affects MAMP-Triggered Immunity by Modulating ROS Production. Plant Physiol. 2017;175(2):970-981. PubMed, PubMedCentral, CrossRef
- Perk EA, Arruebarrena Di Palma A, Colman S, Mariani O, Cerrudo I, D’Ambrosio JM, Robuschi L, Pombo MA, Rosli HG, Villareal F, Laxalt AM. CRISPR/Cas9-mediated phospholipase C 2 knock-out tomato plants are more resistant to Botrytis cinerea. Planta. 2023;257(6):117. PubMed, CrossRef
- Takasato S, Bando T, Ohnishi K, Tsuzuki M, HikichiY, Kiba A. Phosphatidylinositol-phospholipase C3 negatively regulates the hypersensitive response via complex signaling with MAP kinase, phytohormones, and reactive oxygen species in Nicotiana benthamiana. J Exp Bot. 2023;74(15):4721-4735. PubMed, PubMedCentral, CrossRef
- Hunter K, Kimura S, Rokka A, Tran HC, Toyota M, Kukkonen JP, Wrzaczek M. CRK2 Enhances Salt Tolerance by Regulating Callose Deposition in Connection with PLD α1. Plant Physiol. 2019;180(4):2004-2021. PubMed, PubMedCentral, CrossRef
- Cao L, Wang W, Zhang W, Staiger CJ. Lipid signaling requires ROS production to elicit actin cytoskeleton remodeling during plant innate immunity. Int J Mol Sci. 2022;23(5):2447. PubMed, PubMedCentral, CrossRef
- Li W, Song T, Wallrad L, Kudla J, Wang X, Zhang W. Tissue-specific accumulation of pH-sensing phosphatidic acid determines plant stress tolerance. Nat Plants. 2019;5(9):1012-1021. PubMed, CrossRef
- D’Ambrosio JM, Gonorazky G, Sueldo DJ, Moraga J, Di Palma AA, Lamattina L, Collado IG, Laxalt AM. The sesquiterpene botrydial from Botrytis cinerea induces phosphatidic acid production in tomato cell suspensions. Planta. 2018;247(4):1001-1009. PubMed, CrossRef
- Raho N, Ramirez L, Lanteri ML, Gonorazky G, Lamattina L, ten Have A, Laxalt AM. Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. J Plant Physiol. 2011;168(6):534-539. PubMed, CrossRef
- Janda M, Šašek V, Chmelařová H, Andrejch J, Nováková M, Hajšlová J, Burketová L, Valentová O. Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana. Front Plant Sci. 2015;6:59. PubMed, PubMedCentral, CrossRef
- Kasparovsky T, Blein JP, Mikes V. Ergosterol elicits oxidative burst in tobacco cells via phospholipase A2 and protein kinase C signal pathway. Plant Physiol Biochem. 2004;42(5):429-435. PubMed, CrossRef
- Serna-Sanz A, Parniske M, Peck SC. Phosphoproteome analysis of Lotus japonicus roots reveals shared and distinct components of symbiosis and defense. Mol Plant Microbe Interact. 2011;24(8):932-937. PubMed, CrossRef
- Vergnolle C, Vaultier MN, Taconnat ., Renou JP, Kader JC, Zachowski A, Ruelland E. The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol. 2005;139(3):1217-1233. PubMed, PubMedCentral, CrossRef
- Genva M, Fougère L, Bahammou D, Mongrand S, Boutté Y, Fouillen L. A global LC-MS2 -based methodology to identify and quantify anionic phospholipids in plant samples. Plant J. 2023. PubMed, CrossRef
