Tag Archives: α-tocopherol
Effects of α-tocopherol and its anologues on rat thymocytes programmed death induced by protein kinase inhibitors
G. V. Petrova, N. V. Delemenchuk, G. V. Donchenko
Palladin Institute of Вiochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: petrova@biochem.kiev.ua
It is established that α-tocopherol (α-ТPh) shows cytoprotective effect at the induction of rats’ thymocytes apoptosis by endocellular protein kinase inhibitors – staurosporine and phorbol ether in high concentration, and also on necrosis of the cells caused by sphyngosine. The effect of α-ТPh on thymocytes death caused by protein phosphatase type 2А inhibitor ocadaic acid is much less expressed. The obtained data testify that the known ability of α-ТPh to the inhibition of PKC and to the activation of protein phosphatase type 2А is not the main mechanism of its cytoprotective action. Partial reproduction of α-ТPh effects by its analogue α-tocopheryl acetate which is not capable to enter in redox reactions, and the absence of influence on the studied processes of an antioxidant of N-acetyl-L-cysteine do not confirm the antioxidant mechanism of α-ТPh action in this case. The inhibition by α-ТPh of the release of cytochrome c in the cytosol of cells testifies to the implementation of its cytoprotective effect at the level of mitochondrial membranes. We assume the existence of the universal mechanism of α-ТPh cytoprotective action that does not depend on the nature of apoptogenes and realized on the general for the majority of them stage of the cells death induction. The prevention by α-ТPh of mitochondria dysfunction by stabilizing mitochondrial membranes and reduction of their permeabilization is supposed as that.
Effect of nicotinamide on amino acids content in bone collagen depending on biological availability of vitamins in diabetic rats
M. M. Guzyk1, Iu. T. Sergiichuk1,2, K. O. Dyakun1,2,
L. V. Yanitska3, T. M. Kuchmerovska1
1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: kuch@biochem.kiev.ua;
2Taras Shevchenko Kyiv National University, Ukraine;
3O. O. Bogomolets National Medical University, Kyiv
Connective tissue is highly susceptible to imbalances induced by diabetes. Diabetes-related osteopenia, decreased bone strength etc. may be associated with altered metabolism of various collagens. Although it is assumed that alterations in collagen amino acids (AA) may strongly affect protein properties and physiological functions, however, very limited evidences are present at the moment regarding AA composition of bone type I collagen and its relevance to abnormal availability of vitamins which are necessary for collagen synthesis in diabetes. We have tested whether nicotinamide (NAm) can influence type I collagen formation and AA composition as well as vitamins availability in diabetes. After 4 weeks of STZ-induced diabetes (60 mg/kg) male Wistar rats were injected for 2 weeks with/without NAm (200 mg/kg b. w.). Acid extraction of type I collagen from the bones was performed with following stepwise salting out. The content of type I collagen after its acid extraction from the bones was estimated by the amounts of hydroxyproline. Amino acids were assayed by cation exchange chromatography. Diabetes-associated changes in AA composition of type I collagen mainly affect those amino acids which are known to be involved in helix formation and cross-linking of the molecules. Diabetes was found to significantly reduce bone collagen contents of o-Pro, Gly, Ala, o-Lys and Pro, whereas Lys, His, Arg, Glu, Thr, Leu, Phe contents were elevated (P < 0.05). NAm treatment was able to partially normalise AA contents. In diabetes, blood serum and hepatic vitamin C and B3 contents were shown to be significantly lowered, whereas α-tocopherol was slightly increased compared with control (P < 0.05). Restoration of circulatory and liver vitamin C and B3 was observed. The data demonstrate the close relationship between the diabetes-associated decrease in type I collagen deposition, altered amino acids metabolism and impaired availability of vitamins, which are necessary for collagen synthesis. Thus, NAm might be a useful agent for treatment of bone failures related to diabetes.







