Tag Archives: ‘free iron’ complexes

Remodulating effect of doxorubicin on the state of iron-containing proteins, and redox characteristics of tumor with allowance for its sensitivity to cytostatic agents

V. F. Chekhun, Yu. V. Lozovska, A. P. Burlaka,
I. I. Ganusevich, Yu. V. Shvets, N. Yu. Lukyanova,
I. M. Todor, N. A. Tregubova, L. A. Naleskina

R. E. Kavetsky Institute of Experimental Pathology, Oncology
and Radiobiology, National Academy of Sciences of Ukraine, Kyiv;
e-mail: Lozovskaya.2012@mail.ru

The study was aimed at determining the changes of metal-containing proteins in blood serum and tumor tissue of animals with parental and doxorubicin-resistant strains of Walker-256 carcinosarcoma before and after the cytostatic administration. It has been shown that upon doxorubicin action the levels of total iron and transferrin in the tissues from the both groups of animals decreased while that of ferritine simultaneously increased with more pronounced pattern in the group of animals with resistant tumor strain. It has been shown that upon the action of doxorubicin in tumor tissue of animals with different sensitivity to the cytostatic there could be observed oppositely directed changes in the redox state of these cells that in turn determined the content of “free iron” complexes, ROS generation and concentration of active forms of matrix metaloproteinase-2 and matrix metaloproteinase-9, namely, the increase of these indexes in animals with parental strain and their decrease in animals with the resistant one. So, our study has demonstrated the remodulating effect of doxorubicin on the state of metal-containing proteins and redox characteristics of tumor dependent on its sensitivity to cytostatic, at the levels of the tumor and an organism. These data may serve as a criterion for the development of programs for the correction of malfunction of iron metabolism aimed at elevating tumor sensitivity to cytostatic agents.

Metalloproteins during development of Walker-256 carcinosarcoma resistant phenotype

V. F. Chekhun, Yu. V. Lozovska, A. P. Burlaka, I. I. Ganusevich,
Yu. V. Shvets, N. Yu. Lukianova, I. M. Todor, D. V. Demash,
A. A. Pavlova, L. A. Naleskina

R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology,
National Academy of Sciences of Ukraine, Kyiv;
e-mial: Lozovskaya.2012@mail.ru

The study was focused on the detection of changes in serum and tumor metal-containing proteins in animals during development of doxorubicin-resistant phenotype in malignant cells after 12 courses of chemotherapy. We found that on every stage of resistance development there was a significant increase in content of ferritin and transferrin proteins (which take part in iron traffick and storage) in Walker-256 carcinosarcoma tissue. We observed decreased serum ferritin levels at the beginning stage of the resistance development and significant elevation of this protein levels in the cases with fully developed resistance phenotype. Transferrin content showed changes opposite to that of ferritin. During the development of resistance phenotype the tumor tissue also exhibited increased ‘free iron’ concentration that putatively correlate with elevation of ROS generation and levels of MMP-2 and MMP-9 active forms. The tumor non-protein  thiol content increases gradually as well. The serum of animals with early stages of resistance phenotype development showed high ceruloplasmin activity and its significant reduction after loss of tumor sensitivity to doxorubicin. Therefore, the development of resistance phenotype in Walker-256 carcinosarcoma is accompanied by both the deregulation of metal-containing proteins in serum and tumor tissue and by the changes in activity of antioxidant defense system. Thus, the results of this study allow us to determine the spectrum of metal-containing proteins that are involved in the development of resistant tumor phenotype and that may be targeted for methods for doxorubicin sensitivity correction therapy.