Tag Archives: transferrin

Biochemical mechanisms of chromium action in the human and animal organism

R. Ya. Iskra, V. G. Yanovych

Institute of Animal Biology, National Academy of Agrarian Sciences, Lviv, Ukraine;
e-mail: ruslana_iskra@inenbiol.com.ua

Modern data concerning biologic characteristics of chromium (Cr3+) its placement in nature, accessibility and metabolic action of its different forms in humans and animals is presented in this survey. Essentiality of chromium for humans is emphasized, data about consumption norms of this microelement and its use for curing different diseases especially diabetes mellitus and atherosclerosis of vessels are presented. The biochemical mechanisms of Cr3+ effect on the metabolism in the human and animal organism are analyzed. It is shown that the organism reacts to chrome additions by the change of some metabolism links. Chrome influences positively growth and development of foetus, stimulates metabolism of glucose and insulin in the humans and animals. However, at the set chromium requirements it is necessary to take into account its low availability in food, high release of Cr3+ from the organism under the influence of stress factors, considerable decline of its level with age, and also in the period of pregnancy and lactation. Therefore experimental researches of introduction of Cr3+ additions to the diet of people and forage of animals taking into account their body mass, age and clinical state, can explain the biochemical mechanisms of biological action of this microelement.

Asbestos-stimulated changes in nitric oxide and iron metabolism in rats

S. G. Shandrenko, T. O. Kishko, I. N. Chumachenko, N. P. Dmitrenko

Palladin Institute of Biochemistry, National Academy
of Sciences of Ukraine, Kyiv;
е-mail: dmytrenko@biochem.kiev.ua

Under intratracheal asbestos fibers installation it has been investigated NO synthesis in the lung and liver tissues of Wistar rats by EPR method­. Asbestos А6-45, sifted through the sieve with size 0.1 mm, has been administrated in a dose of 5 mg/kg. To evaluate the NO synthesis EPR and NO-trap methods have been used. The amplitude of EPR signal “trap-NO” in the lung samples was 12, 16 and 14 times greater than in controls on the 3th, 6th and 10th days after asbestos installation and was corresponding to NO rate of about 2 mkmol/(g∙h). In the liver samples of asbestos-stimulated animals the NO level contained in the non-heme iron nitrosyl complexes was about 2 mkmol/g. Thus, the asbestos fibers stimulate NO synthesis not only in the lung tissue, but also in other organs. The obtained data shows that under NO hyperproduction certain changes in iron metabolism take place, such as: the decrease of transferrin iron and the accumulation of ferric iron not bound with transferrin. The accumulation of ferric iron not shielded by proteins is one of the oxidative stress triggers.

Labile iron pool formation in rat’s blood under rhabdomyolysis

S. G. Shandrenko

Palladin Institute of Biochemistry, National Academy of Siences of Ukraine, Kyiv;
e-mail: shangr-s@yandex.ru

The labile nonheme iron pool formation in blood under glycerol induced rhabdomyolysis in rats has been investigated. This iron is not included in transferrin, thereby it is redox-active. Rhabdomyolysis was caused by intramuscular injection of 50% glycerol in a dose of 10 ml/kg. In the first day it has been registered that the blood plasma free heme content increased 10 times and the liver heme-oxigenase activity increased 6 times. Plasma redox-active iron pool formation has been registered by EPR method. Such iron was absent in the control group. This iron pool content in the interval from the 1st to the 6st day was more than 2 mg/l and significantly higher than the transferrin iron level. The plasma iron pool unshielded by transferrin may be one of oxidative stress causes.

Metalloproteins during development of Walker-256 carcinosarcoma resistant phenotype

V. F. Chekhun, Yu. V. Lozovska, A. P. Burlaka, I. I. Ganusevich,
Yu. V. Shvets, N. Yu. Lukianova, I. M. Todor, D. V. Demash,
A. A. Pavlova, L. A. Naleskina

R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology,
National Academy of Sciences of Ukraine, Kyiv;
e-mial: Lozovskaya.2012@mail.ru

The study was focused on the detection of changes in serum and tumor metal-containing proteins in animals during development of doxorubicin-resistant phenotype in malignant cells after 12 courses of chemotherapy. We found that on every stage of resistance development there was a significant increase in content of ferritin and transferrin proteins (which take part in iron traffick and storage) in Walker-256 carcinosarcoma tissue. We observed decreased serum ferritin levels at the beginning stage of the resistance development and significant elevation of this protein levels in the cases with fully developed resistance phenotype. Transferrin content showed changes opposite to that of ferritin. During the development of resistance phenotype the tumor tissue also exhibited increased ‘free iron’ concentration that putatively correlate with elevation of ROS generation and levels of MMP-2 and MMP-9 active forms. The tumor non-protein  thiol content increases gradually as well. The serum of animals with early stages of resistance phenotype development showed high ceruloplasmin activity and its significant reduction after loss of tumor sensitivity to doxorubicin. Therefore, the development of resistance phenotype in Walker-256 carcinosarcoma is accompanied by both the deregulation of metal-containing proteins in serum and tumor tissue and by the changes in activity of antioxidant defense system. Thus, the results of this study allow us to determine the spectrum of metal-containing proteins that are involved in the development of resistant tumor phenotype and that may be targeted for methods for doxorubicin sensitivity correction therapy.