Ukr.Biochem.J. 2015; Volume 87, Issue 1, Jan-Feb, pp. 75-82

doi: https://doi.org/10.15407/ubj87.01.075

Analysis of creatine kinase activity with evaluation of protein expression under the effect of heat and hydrogen peroxide

A. D. Rakhmetov1, Lee Sang Pil2, L. I. Ostapchenko1, Chae Ho Zoon2

1Education and Science Center Institute of Biology Taras Shevchenko National University of Kyiv, Ukraine;
2Chonnam National University, Gwangju, South Korea;
e-mail: anar.rakhmetov@gmail.com

Protein oxidation has detrimental effects on the brain functioning, which involves inhibition of the crucial enzyme, brain type creatine kinase (CKBB), responsible for the CK/phosphocreatine shuttle system. Here we demonstrate a susceptibility of CKBB to several ordinary stressors. In our study enzymatic activity of purified recombinant brain-type creatine kinase was evaluated. We assayed 30 nM concentration of CKBB under normal and stress conditions. In the direction of phosphocreatine formation hydrogen peroxide and heat treatments altered CKBB activity down to 26 and 14%, respectively. Also, examination of immunoblotted membrane patterns by SDS-PAGE electrophoresis and western blot analysis showed a decrease in expression levels of intrinsic CKBB enzyme in HeLa and A549 cells. Hence, our results clearly show that cytosolic CKBB is extremely sensitive to oxidative stress and heat induced inactivation. Therefore, due to its susceptibility, this enzyme may be defined as a potential target in brain damage.

Keywords: , , ,


References:

  1. Streijger F, Pluk H, Oerlemans F, Beckers G, Bianco AC, Ribeiro MO, Wieringa B, Van der Zee CE. Mice lacking brain-type creatine kinase activity show defective thermoregulation. Physiol Behav. 2009 Apr 20;97(1):76-86. PubMed, PubMedCentral, CrossRef
  2.  Gao YS, Zhao TJ, Chen Z, Li C, Wang Y, Yan YB, Zhou HM. Isoenzyme-specific thermostability of human cytosolic creatine kinase. Int J Biol Macromol. 2010 Jul 1;47(1):27-32. PubMed, CrossRef
  3. Ramírez Ríos S, Lamarche F, Cottet-Rousselle C, Klaus A, Tuerk R, Thali R, Auchli Y, Brunisholz R, Neumann D, Barret L, Tokarska-Schlattner M, Schlattner U. Regulation of brain-type creatine kinase by AMP-activated protein kinase: interaction, phosphorylation and ER localization. Biochim Biophys Acta. 2014 Aug;1837(8):1271-83. PubMed, CrossRef
  4. Streijger F, Oerlemans F, Ellenbroek BA, Jost CR, Wieringa B, Van der Zee CE. Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit. Behav Brain Res. 2005 Feb 28;157(2):219-34. PubMed
  5. Aksenov M, Aksenova M, Butterfield DA, Markesbery WR. Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem. 2000 Jun;74(6):2520-7. PubMed
  6. Beal MF. Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci. 2000 Jul;23(7):298-304. Review. PubMed
  7. Bürklen T.S., Schlattner U., Homayouni R., Gough K., Rak M., Szeghalmi A., Wallimann T. The Creatine Kinase. Creatine Connection to Alzheimer’s Disease: CK Inactivation, APP-CK Complexes, and Focal Creatine Deposits. J Biomed Biotechnol. 2006;2006(3):1-11.
  8. Hemmer W, Wallimann T. Functional aspects of creatine kinase in brain. Dev Neurosci. 1993;15(3-5):249-60. Review. PubMed
  9. Konorev EA, Hogg N, Kalyanaraman B. Rapid and irreversible inhibition of creatine kinase by peroxynitrite. FEBS Lett. 1998 May 8;427(2):171-4. PubMed
  10. Kenyon GL. Energy metabolism. Creatine kinase shapes up. Nature. 1996 May 23;381(6580):281-2. PubMed
  11. Hornemann T, Rutishauser D, Wallimann T. Why is creatine kinase a dimer? Evidence for cooperativity between the two subunits. Biochim Biophys Acta. 2000 Jul 14;1480(1-2):365-73. PubMed
  12. Lyubarev AE, Kurganov BI, Orlov VN, Zhou HM. Two-state irreversible thermal denaturation of muscle creatine kinase. Biophys Chem. 1999 Jun 28;79(3):199-204. PubMed
  13. Kurganov BI, Lyubarev AE, Sanchez-Ruiz JM, Shnyrov VL. Analysis of differential scanning calorimetry data for proteins. Criteria of validity of one-step mechanism of irreversible protein denaturation. Biophys Chem. 1997 Dec 1;69(2-3):125-35. PubMed
  14. Gao YS, Su JT, Yan YB. Sequential events in the irreversible thermal denaturation of human brain-type creatine kinase by spectroscopic methods. Int J Mol Sci. 2010 Jun 25;11(7):2584-96. PubMed, PubMedCentral, CrossRef
  15. Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR. Protein oxidation in the brain in Alzheimer’s disease. Neuroscience. 2001;103(2):373-83. PubMed
  16. Rakhmetov A. D., Li S. P., Ostapchenko L. U., Chae H. Z. Molecular Cloning of Human Brain-Type Creatine Kinase Gene into Bacteria Expression Vectors PET-17B, PET-14B and Flag Tagged Mammalian Expression Vector PCMV. Vistnyk KNU. 2013;64(2):58-61.
  17. Rakhmetov A. D., Li S. P., Ostapchenko L. U., Chae H. Z. Purification and polyclonal anti­body production of recombinant brain-type creatine kinase. Russian J. Biopharmaceuticals. 2014;6(2):7-11.
  18. Yao Q. Z., Hou L. X., Zhou H. M., Zho C. G. Conformational changes of creatine kinase during guanidine denaturation. Sci Sin. 1982;25(11):1186-1193.
  19. Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids. 2011 May;40(5):1271-96. Review. PubMed, PubMedCentral, CrossRef
  20. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A. Protein carbonylation in human diseases. Trends Mol Med. 2003 Apr;9(4):169-76. Review. PubMed
  21. Zhang SF, Hennessey T, Yang L, Starkova NN, Beal MF, Starkov AA. Impaired brain creatine kinase activity in Huntington’s disease. Neurodegener Dis. 2011;8(4):194-201.  PubMed, PubMedCentral, CrossRef
  22. Genet S, Kale RK, Baquer NZ. Effects of free radicals on cytosolic creatine kinase activities and protection by antioxidant enzymes and sulfhydryl compounds. Mol Cell Biochem. 2000 Jul;210(1-2):23-8. PubMed
  23. Li XH, Chen Z, Gao YS, Yan YB, Zhang F, Meng FG, Zhou HM. Generation of the oxidized form protects human brain type creatine kinase against cystine-induced inactivation. Int J Biol Macromol. 2011 Mar 1;48(2):239-42. PubMed, CrossRef
  24. Liu ZJ, Zhou JM. Spin-labeling probe on conformational change at the active sites of creatine kinase during denaturation by guanidine hydrochloride. Biochim Biophys Acta. 1995 Nov 15;1253(1):63-8. PubMed
  25. Mu H, Zhou SM, Yang JM, Meng FG, Park YD. Towards creatine kinase aggregation due to the cysteine modification at the flexible active site and refolding pathway. Int J Biol Macromol. 2007 Oct 1;41(4):439-46. PubMed
  26. Wang HR, Bai JH, Zheng SY, Wang ZX, Zhou HM. Ascertaining the number of essential thiol groups for the folding of creatine kinase. Biochem Biophys Res Commun. 1996 Apr 5;221(1):174-80. PubMed
  27. Zhou HM, Tsou CL. The presence of reactive SH groups in the enzymatically active dicyano derivative of creatine kinase. Biochim Biophys Acta. 1987 Jan 30;911(2):136-43. PubMed
  28. Zhao TJ, Feng S, Wang YL, Liu Y, Luo XC, Zhou HM, Yan YB. Impact of intra-subunit domain-domain interactions on creatine kinase activity and stability. FEBS Lett. 2006 Jul 10;580(16):3835-40. PubMed
  29. Feng S, Zhao TJ, Zhou HM, Yan YB. Effects of the single point genetic mutation D54G on muscle creatine kinase activity, structure and stability. Int J Biochem Cell Biol. 2007;39(2):392-401. PubMed
  30. Yatin SM, Aksenov M, Butterfield DA. The antioxidant vitamin E modulates amyloid beta-peptide-induced creatine kinase activity inhibition and increased protein oxidation: implications for the free radical hypothesis of Alzheimer’s disease. Neurochem Res. 1999 Mar;24(3):427-35. PubMed

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.