Ukr.Biochem.J. 2015; Volume 87, Issue 2, Mar-Apr, pp. 141-155

doi: https://doi.org/10.15407/ubj87.02.141

The effect of chlorination of nucleotide bases on the conformational properties of thymidine monophosphate

T. M. Mukhina, T. Yu. Nikolaienko

Taras Shevchenko National University of Kyiv, Ukraine;
e-mail: MukhinaTanyaM@gmail.com; tim_mail@ukr.net

Recent studies on Escherichia coli bacteria cultivation, in which DNA thymine was replaced with 5-chlorouracil have refreshed the problem of understanding the changes to physical properties of DNA monomers resultant from chemical modifications. These studies have shown that the replacement did not affect the normal activities and division of the bacteria, but has significantly reduced its life span. In this paper a comparative analysis was carried out by the methods of computational experiment of a set of 687 possible conformers of natural monomeric DNA unit (2′-deoxyribonucleotide thymidine monophosphate) and 660 conformers of 5-chloro-2′-deoxyuridine monophosphate – a similar molecules in which the natural nitrogenous base thymine is substituted with 5-chlorouracil. Structures of stable conformers of the modified deoxyribonucleotide have been obtained and physical factors, which determine their variation from the conformers of the unmodified molecule have been analyzed. A comparative analysis of the elastic properties of conformers­ of investigated molecules and non-covalent interactions present in them was conducted. The results can be used for planning experiments on synthesis of artificial DNA suitable for incorporation into living organisms.

Keywords: , , , , ,


References:

  1. Marliere P, Patrouix J, Döring V, Herdewijn P, Tricot S, Cruveiller S, Bouzon M, Mutzel R. Chemical Evolution of a Bacterium’s Genome. Andgew. Chem. Int. Ed. 2011;50(31):7109-7114. PubMed, CrossRef
  2. Nikolaienko TYu, Bulavin LA, Hovorun DM. Quantum-mechanical conformational analysis of the 5′-thymidilic acid molecule. Ukr Biokhim Zhurn. 2010;82(6):76-86. (In Ukrainian). PubMed
  3. Voiteshenko IS, Zhurakivsky RO, Bu­lavin LA, Hovorun DM. The simplest molecular model of 2′-deoxyribopolinucleotides sugar-phosphate backbone: quantum-chemical adequacy check. Ukr Biokhim Zhurn. 2011;83(3):106-112. (In Ukrainian). PubMed
  4. Voiteshenko IS, Zhurakivsky RO, Bulavin LA, Hovorun DM. Complete conformation analysis of a low-molecular electroneutral model of sugar-phosphate DNA chain. Rep. Nat. Acad. Sci. Ukraine. 2011;(6):188-196. (In Ukrainian).
  5. Nikolaienko TYu, Bulavin LA, Hovorun DM. How flexible are DNA constituents? The quantum-mechanical study. J Biomol Struct Dyn. 2011 Dec;29(3):563-75. PubMed, CrossRef
  6. Nikolaienko TYu, Bulavin LA, Hovorun DM. Structural flexibility of canonical 2′-deoxyribonucleotides in DNA-like conformations. Ukr Biokhim Zhurn. 2011;83(5):48-58. (In Ukrainian). PubMed
  7. Nikolaienko TYu, Bulavin LA, Hovorun DM. The 5′-deoxyadenylic acid molecule confor­mational capacity: quantum-mechanical investigation using density functional theory (DFT). Ukr Biokhim Zhurn. 2011;83(4):16-28. (In Ukrainian). [pjm id=”22145406″]
  8. Nikolaienko TYu, Bulavin LA, Hovorun DM. Conformational capacity of 5′-deoxyguanylic acid molecule investigated by quantum-mechanical methods. Biopolym Cell. 2011;27(4):291-299. (In Ukrainian). CrossRef
  9. Nikolaienko T. Yu., Hovorun D. M. Quantum-mechanical conformational analysis of 2-deoxycytidilic acid molecule — the DNA structural unit. Rep. Nat. Acad. Sci. Ukraine. 2010;(9):173-184. (I Ukrainian).
  10. Saenger W. Principles of nucleic acid structure. Springer-Verlag, 1984; 556 p.
  11. Gaussian 03, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, JB Cross, Bakken V, Adamo C, Jaramillo J, Gomperts R, RE Stratmann, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian, Inc., Wallingford CT, 2004.
  12. Bader RF. Atoms in Molecules: A Quantum Theory. Oxford University Press, 1994; 458 p.
  13. AIMAll (Version 08.11.29), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2014 (aim.tkgristmill.com).
  14. Nikolaienko TY, Bulavin LA, Hovorun DM. Structural flexibility of DNA-like conformers of canonical 2′-deoxyribonucleosides. Phys Chem Chem Phys. 2012 Nov 28;14(44):15554-61.PubMed, CrossRef
  15. Nikolaienko TYu, Bulavin LA, Hovorun DM. Structural flexibility of canonical 2′-deoxyribonucleotides in DNA-like conformations. Ukr Biokhim Zhurn. 2011;83(5):48-58. (In Ukrainian). PubMed
  16. Nikolaienko TYu, Voiteshenko IS, Bulavin LA, Hovorun DM. Determination of rigidity coefficients for cooperative degrees of freedom in biological molecules. Bulletin of Kyiv University. Series: Physics & Mathematics, 2010;(2):279-282. (In Ukrainian).
  17. Boryskina OP, Tkachenko MYu, Shestopa­lova AV. Variability of DNA structure and protein-nucleic acid reconginition. Biopolym Cell. 2010;26(5):360-372. (In Ukrainian). CrossRef
  18. Wang AH, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680-6. PubMed, CrossRef
  19. Svozil D, Kalina J, Omelka M, Schneider B. DNA conformations and their sequence preferences. Nucleic Acids Res. 2008 Jun;36(11):3690-706. PubMed, CrossRef
  20. Berman HM. Crystal studies of B-DNA: The answers and the questions. Biopolymers. 1997;44(1):23-44.  PubMed, CrossRef
  21. Schneide B, Neidle St, Berman HM. Conformations of the Sugar–Phosphate Backbone in Helical DNA Crystal Structures. Biopolymers. 1997 Jul;42(1):113-124. CrossRef
  22. Gessner RV, Frederick CA, Quigley GJ, Rich A, Wang AH. The molecular structure of the left-handed Z-DNA double helix at 1.0-A atomic resolution. Geometry, conformation, and ionic interactions of d(CGCGCG). J Biol Chem. 1989 May 15;264(14):7921-35. PubMed
  23. Bulavin LA, Hovorun DM, Nikolaienko TYu. The structure of DNA monomers. Kiev: Naukova Dumka, 2014; 205 p. (In Ukrainian).

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.