Ukr.Biochem.J. 2014; Volume 86, Issue 4, Jul-Aug, pp. 51-60


Activation of glybenclamide-sensitive mitochondrial swelling under induction of cyclosporin of A-sensitive mitochondrial pore

O. B. Vadzyuk, S. A. Kosterin

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;

Induction of mitochondrial swelling and increased generation of reactive oxygen forms by Ca ions have been shown in suspension of mitochondria from rat uterus. These effects were suppressed by the blocker of mitochondrial Ca2+-uniporter ruthenium red and MPTP inhibitor сyclosporin A, that evidences that the induction of mitochondrial permeability transition pore by Ca ions takes place. Ca2+-induced mitochondrial swelling was blocked by ATP-sensitive channel blocker glybenclamide but only if K+ was present in the incubation medium. We also demonstrated that Ca2+-induced mitochondrial swelling can be eliminated in the presence of ROS scavengers N-acetyl cysteine and ascorbate. This effect of scavengers was also sensitive to K+ and was not revealed in the medium that contained equimolar NaCl instead of KCl. Thus, our data gave us grounds to assume that the induction of MPTP by Ca ions evokes the activation of mitochondrial ATP-sensitive K+-channels, which are mediated by ROS.

Keywords: , , , ,


  1. Teramoto N, Zhu HL, Shibata A, Aishima M, Walsh EJ, Nagao M, Cole WC. ATP-sensitive K+ channels in pig urethral smooth muscle cells are heteromultimers of Kir6.1 and Kir6.2. Am J Physiol Renal Physiol. 2009 Jan;296(1):F107-17. PubMed, CrossRef
  2. Dick GM, Tune JD. Role of potassium channels in coronary vasodilation. Exp Biol Med (Maywood). 2010 Jan;235(1):10-22. Review. PubMed, CrossRef
  3. Mironova GD, Negoda AE, Marinov BS, Paucek P, Costa AD, Grigoriev SM, Skarga YY, Garlid KD. Functional distinctions between the mitochondrial ATP-dependent K+ channel (mitoKATP) and its inward rectifier subunit (mitoKIR). J Biol Chem. 2004 Jul 30;279(31):32562-8. PubMed, CrossRef
  4. Cancherini DV, Trabuco LG, Rebouças NA, Kowaltowski AJ. ATP-sensitive K+ channels in renal mitochondria. Am J Physiol Renal Physiol. 2003 Dec;285(6):F1291-6. PubMed, CrossRef
  5. Costa A, Quinlan C, Andrukhiv A, West I, Jaburek M, Garlid K. The direct physiological effects of mitoK(ATP) opening on heart mitochondria. Biol Endocrinol. 2011;9:35-41.
  6. Xu C, You X, Gao L, Zhang L, Hu R, Hui N, Olson DM, Ni X. Expression of ATP-sensitive potassium channels in human pregnant myometrium. Reprod Biol Endocrinol. 2011 Mar 21;9:35. PubMed, PubMedCentral, CrossRef
  7. Curley M, Cairns M., Friel A, McMeel O, Morrison J, Smith T. Expression of mRNA transcripts for ATP-sensitive potassium channels in human myometrium. Molec. Human Reprod. 2002 Oct;8(10):941-945. PubMed, CrossRef
  8. Yamada M. Mitochondrial ATP-sensitive K+ channels, protectors of the heart. J Physiol. 2010 Jan 15;588(Pt 2):283-6. PubMed, PubMedCentral, CrossRef
  9. Ljubkovic M, Marinovic J, Fuchs A, Bosnjak Z, Bienengraber M. Targeted expression of Kir6.2 in mitochondria confers protection against hypoxic stress. J Physiol. 2006 Nov 15;577(Pt 1):17-29.  PubMed, PubMedCentral, CrossRef
  10. Queliconi BB, Wojtovich AP, Nadtochiy SM, Kowaltowski AJ, Brookes PS. Redox regulation of the mitochondrial K(ATP) channel in cardioprotection. Biochim Biophys Acta. 2011 Jul;1813(7):1309-15.  PubMed, PubMedCentral, CrossRef
  11. Hansson M, Morota S., Teilum M, Mattia­sson G, Uchino H, Elmer E. Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume. J Biol Chem. 2010 Jan 1;285(1):741-50.  PubMed, PubMedCentral, CrossRef
  12. Vadzuk ОB, Kosterin SО. Diazoxide-induced mitochondrial swelling in the rat myometrium as a consequence of the activation of the mitochondrial ATP-sensitive K+-channel. Ukr Biokhim Zhurn. 2008 Sep-Oct;80(5):45-51. Russian. PubMed
  13. Vadzyuk ОB, Chunikhin AYu, Kosterin SО. Influence of the effectors of mitochonrial ATP dependent potassium channel of diazoxide and glybenclamide on hydrodynamic diameter and membrane potential of the mitochondria myometrium. Ukr Biokhim Zhurn. 2010 Jul-Aug;82(4):40-7. Ukrainian. PubMed
  14. Sanborn BM, Ku CY, Shlykov S, Babich L. Molecular signaling through G-protein-coupled receptors and the control of intracellular calcium in myometrium. J Soc Gynecol Investig. 2005 Oct;12(7):479-87. Review. PubMed
  15. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. PubMed
  16. Gomes A, Fernandes E, Lima JL. Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods. 2005 Dec 31;65(2-3):45-80. Review. PubMed
  17. O’Brien TM, Wallace KB. Mitochondrial permeability transition as the critical target of N-acetyl perfluorooctane sulfonamide toxicity in vitro. Toxicol Sci. 2004 Nov;82(1):333-40. PubMed
  18. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008 Apr;88(2):581-609. Review. PubMed, PubMedCentral, CrossRef
  19. Walters AM, Porter GA Jr, Brookes PS. Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res. 2012 Oct 12;111(9):1222-36. Review. PubMed, PubMedCentral, CrossRef
  20. Kursky MD, Kosterin SA, Burchinskaya NF, Shlykov SG. Passive transport of Ca2+ in a myometrium mitochondria fraction. Ukr Biokhim Zhurn. 1987 May-Jun;59(3):35-9. Russian. PubMed
  21. Santo-Domingo J, Demaurex N. Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):907-12. Review. PubMed, CrossRef
  22. Malli R, Naghdi S, Romanin C, Graier WF. Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload. J Cell Sci. 2008 Oct 1;121(Pt 19):3133-9. PubMed, PubMedCentral, CrossRef
  23. Kohlhaas M, Maack C. Calcium release microdomains and mitochondria. Cardiovasc Res. 2013 May 1;98(2):259-68. Review. PubMed, CrossRef
  24. Dorn GW 2nd, Scorrano L. Two close, too close: sarcoplasmic reticulum-mitochondrial crosstalk and cardiomyocyte fate. Circ Res. 2010 Sep 17;107(6):689-99. Review. PubMed, PubMedCentral, CrossRef
  25. Feissner RF, Skalska J, Gaum WE, Sheu SS. Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci (Landmark Ed). 2009 Jan 1;14:1197-218. Review. PubMed, PubMedCentral, CrossRef
  26. Hoppe UC. Mitochondrial calcium channels. FEBS Lett. 2010 May 17;584(10):1975-81. Review. PubMed, CrossRef
  27.  Chen X, Zhang X, Kubo H, Harris D, Mills G, Moyer J, Berretta R, Potts ST, Marsh J, Houser S. Ca2+ influx-induced sarcoplasmic reticulum Ca2+ overload causes mitochondrial-dependent apoptosis in ventricular myocytes. Circ Res. 2005 Nov 11;97(10):1009-17. PubMed, CrossRef
  28. Kung G, Konstantinidis K, Kitsis RN. Programmed necrosis, not apoptosis, in the heart. Circ Res. 2011 Apr 15;108(8):1017-36. Review. PubMed, CrossRef
  29. Dzeja PP, Holmuhamedov EL, Ozcan C, Pucar D, Jahangir A, Terzic A. Mitochondria: gateway for cytoprotection. Circ Res. 2001 Oct 26;89(9):744-6. PubMed
  30. Szewczyk A, Jarmuszkiewicz W, Kunz WS. Mitochondrial potassium channels. IUBMB Life. 2009 Feb;61(2):134-43. Review. PubMed, CrossRef
  31. Stowe DF, Aldakkak M, Camara AK, Riess ML, Heinen A, Varadarajan SG, Jiang MT. Cardiac mitochondrial preconditioning by Big Ca2+-sensitive K+ channel opening requires superoxide radical generation. Am J Physiol Heart Circ Physiol. 2006 Jan;290(1):H434-40.  PubMed, CrossRef
  32. Fukusawa M., Nishida H., Sato T., Miyazaki M., Nakaya H. 6-[4-(1-Cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2-(1H)quinolinone (cilostazol), a phosphodiesterase type 3 inhibitor, reduces infarct size via activation of mitochondrial Ca2+-activated K+ channels in rabbit hearts. J Pharmacol Exp Ther. 2008 Jul;326(1):100-4. PubMedCrossRef
  33. Sato T, Saito T, Saegusa N, Nakaya H. Mitochondrial Ca2+-activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A. Circulation. 2005 Jan 18;111(2):198-203. PubMed, CrossRef
  34. Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O’Rourke B. Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science. 2002 Nov 1;298(5595):1029-33. PubMed, CrossRef
  35. Cheng Y., Debska-Vielhaber G., Siemen D. Inte­raction of mitochondrial potassium channels with the permeability transition pore. FEBS Letters. 2010;584(10):2005-2012. PubMed, CrossRef
  36. Simerabet M, Robin E, Aristi I, Adamczyk S, Tavernier B, Vallet B, Bordet R, Lebuffe G. Preconditioning by an in situ administration of hydrogen peroxide: involvement of reactive oxygen species and mitochondrial ATP-dependent potassium channel in a cerebral ischemia-reperfusion model. Brain Res. 2008 Nov 13;1240:177-84. PubMed, CrossRef
  37. Hidalgo C, Donoso P. Cell signaling. Getting to the heart of mechanotransduction. Science. 2011 Sep 9;333(6048):1388-90. PubMed, CrossRef
  38. Lu T, He T, Katusic ZS, Lee HC. Molecular mechanisms mediating inhibition of human large conductance Ca2+-activated K+ channels by high glucose. Circ Res. 2006 Sep 15;99(6):607-16. PubMed, CrossRef
  39. Lu T, Chai Q, Yu L, d’Uscio LV, Katusic ZS, He T, Lee HC. Reactive oxygen species signaling facilitates FOXO-3a/FBXO-dependent vascular BK channel β1 subunit degradation in diabetic mice. Diabetes. 2012 Jul;61(7):1860-8. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.