Ukr.Biochem.J. 2014; Volume 86, Issue 2, Mar-Apr, pp. 119-128

doi: http://dx.doi.org/10.15407/ubj86.02.119

Comparative analysis of gene expression in normal and cancer human prostate cell lines

E. E. Rosenberg, G. V. Gerashchenko, V. I. Kashuba

State Key Laboratory of Molecular and Cellular Biology,
Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv;
e-mail: y.e.rozenberg@imbg.org.ua

Prostate cancer is one of the main causes of mortality in men with malignant tumors. The urgent problem was a search for biomarkers of prostate cancer, which would allow distinguishing between aggressive metastatic and latent tumors. The aim of this work was to search for differentially expressed genes in normal epithelial cells PNT2 and prostate cancer cell lines LNCaP, DU145 and PC3, produced from tumors with different aggressiveness and metas­tatic ability. Such genes might be used to create a panel of prognostic markers for aggressiveness and metastasis. Relative gene expression of 65 cancer-related genes was determined by the quantitative polymerase chain reaction (Q-PCR). Expression of 29 genes was changed in LNCaP cells, 20 genes in DU145 and 16 genes in PC3 cell lines, compared with normal line PNT2. The obtained data make it possible to conclude that the epithelial-mesenchymal cell transition took place, which involved the loss of epithelial markers, reduced cell adhesion and increased migration. We have also found few differentially expressed genes among 3 prostate cancer cell lines. We have found that genes, involved in cell adhesion (CDH1), invasiveness and metastasis (IL8, CXCL2) and cell cycle control (P16, CCNE1) underwent most changes. These genes might be used for diagnosis and prognosis of invasive metastatic prostate tumors.

Keywords: , , , , , , ,


References:

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. GLOBOCAN 2008 v2.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet]. Lyon, France: International Agency for Research on Cancer; 2010.
  2. Fedorenko ZP, Goulak LO, Mykhailovych YuY, Gorokh YeL, Ryzhov AYu, Soumkina OV, Koutsenko LB. Bulletin of National Cancer Registry of Ukraine No 14. Cancer in Ukraine, 2011-2012. K., 2013:22.
  3. Tai S, Sun Y, Squires JM, Zhang H, Oh WK, Liang CZ, Huang J. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate. 2011 Nov;71(15):1668-79.  PubMed, PubMedCentral, CrossRef
  4. Alimirah F, Chen J, Basrawala Z, Xin H, Choubey D. DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett. 2006 Apr 17;580(9):2294-300. PubMed, CrossRef
  5. Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M, Rao JS. RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem. 2005 Oct 28;280(43):36529-40. PubMed, PubMedCentral, CrossRef
  6. Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF. Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer. 1978 Mar 15;21(3):274-81. PubMed, CrossRef
  7. Ghosh A, Wang X, Klein E, Heston WD. Novel role of prostate-specific membrane antigen in suppressing prostate cancer invasiveness. Cancer Res. 2005 Feb 1;65(3):727-31. PubMed
  8. Mori R, Wang Q, Danenberg KD, Pinski JK, Danenberg PV. Both beta-actin and GAPDH are useful reference genes for normalization of quantitative RT-PCR in human FFPE tissue samples of prostate cancer. Prostate. 2008 Oct 1;68(14):1555-60. PubMed, CrossRef
  9. Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001 May 1; 29(9): e45. PubMed, PubMedCentral, CrossRef
  10. Gerashchenko GV, Bogatyrova OO, Rudenko EE, Kondratov AG, Gordiyuk VV, Zgonnyk YM, Vozianov OF, Pavlova TV, Zabarovsky ER, Rynditch AV, Kashuba VI. Genetic and epigenetic changes of NKIRAS1 gene in human renal cell carcinomas. Exp Oncol. 2010 Jul;32(2):71-5. PubMed
  11. Rudenko EE, Gerashchenko GV, Lapska YV, Bogatyrova OO, Vozianov SO, Zgonnyk YM, Kashuba VI. Genetic and epigenetic changes of GPX1 and GPX3 in human clear-cell renal cell carcinoma. Biopolym Cell. 2013;29(5):395–401. CrossRef
  12. Kondratov AG, Kvasha SM, Stoliar LA, Romanenko AM, Zgonnyk YM, Gordiyuk VV, Kashuba EV, Rynditch AV, Zabarovsky ER, Kashuba VI. Alterations of the WNT7A gene in clear cell renal cell carcinomas. PLoS One. 2012;7(10):e47012. PubMed, PubMedCentral, CrossRef
  13. Ni M, Chen Y, Fei T, Li D, Lim E, Liu XS, Brown M. Amplitude modulation of androgen signaling by c-MYC. Genes Dev. 2013 Apr 1;27(7):734–748. PubMed, PubMedCentral, CrossRef
  14. Katoh M. Function and cancer genomics of FAT family genes (review). Int J Oncol. 2012 Dec;41(6):1913-8. Review. PubMed, PubMedCentral, CrossRef
  15. Lodish H., Berk A., Zipursky S. L. et al. Molecular Cell Biology. New York: 2000. Section 22.1, Cell-Cell Adhesion and Communication. CrossRef
  16. Sottnik JL, Keller ET. Understanding and targeting osteoclastic activity in prostate cancer bone metastases. Curr Mol Med. 2013 May;13(4):626-39. Review. PubMed, PubMedCentral, CrossRef
  17. Takezako N, Hayakawa M, Hayakawa H, Aoki S, Yanagisawa K, Endo H, Tominaga S. ST2 suppresses IL-6 production via the inhibition of IkappaB degradation induced by the LPS signal in THP-1 cells. Biochem Biophys Res Commun. 2006 Mar 10;341(2):425-32. PubMed, CrossRef
  18. Singh RK, Lokeshwar BL. Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs. Mol Cancer. 2009 Jul 31;8:57. PubMed, PubMedCentral, CrossRef
  19. Dluzniewski PJ, Wang MH, Zheng SL, De Marzo AM, Drake CG, Fedor HL, Partin AW, Han M, Fallin MD, Xu J, Isaacs WB, Platz EA. Variation in IL10 and other genes involved in the immune response and in oxidation and prostate cancer recurrence. Cancer Epidemiol Biomarkers Prev. 2012 Oct;21(10):1774-82. PubMed, PubMedCentral, CrossRef
  20. Killian PH, Kronski E, Michalik KM, Barbieri O, Astigiano S, Sommerhoff CP, Pfeffer U, Nerlich AG, Bachmeier BE. Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2. Carcinogenesis. 2012 Dec;33(12):2507-19. PubMed, CrossRef
  21. Hsieh HL, Schäfer BW, Weigle B, Heizmann CW. S100 protein translocation in response to extracellular S100 is mediated by receptor for advanced glycation endproducts in human endothelial cells. Biochem Biophys Res Commun. 2004 Apr 9;316(3):949-59. PubMed, CrossRef
  22. Aggarwal BB, Banerjee S, Bharadwaj U, Sung B, Shishodia S, Sethi G. Curcumin induces the degradation of cyclin E expression through ubiquitin-dependent pathway and up-regulates cyclin-dependent kinase inhibitors p21 and p27 in multiple human tumor cell lines. Biochem Pharmacol. 2007 Apr 1;73(7):1024-32. PubMed, CrossRef
  23. Mo ML, Chen Z, Li J, Li HL, Sheng Q, Ma HY, Zhang FX, Hua YW, Zhang X, Sun DQ, Xu ML, Niu RG, Xu JP, Zuo HJ, Liu M, Zhou HM. Use of serum circulating CCNB2 in cancer surveillance. Int J Biol Markers. 2010 Oct-Dec;25(4):236-42. PubMed, CrossRef
  24. Yao Q, He XS, Zhang JM, He J. Promotor hypermethylation of E-cadherin, p16 and estrogen receptor in prostate carcinoma. Zhonghua Nan Ke Xue. 2006 Jan;12(1):28-31. Chinese. PubMed
  25. Zhang ZW, Yang ZM, Zheng YC, Chen ZD. Transgelin induces apoptosis of human prostate LNCaP cells through its interaction with p53. Asian J Androl. 2010 Mar;12(2):186-95. PubMed, PubMedCentral, CrossRef
  26. Pan X, Zhao J, Zhang WN, Li HY, Mu R, Zhou T, Zhang HY, Gong WL, Yu M, Man JH, Zhang PJ, Li AL, Zhang XM. Induction of SOX4 by DNA damage is critical for p53 stabilization and function. Proc Natl Acad Sci USA. 2009 Mar 10;106(10):3788-93. PubMed, PubMedCentral, CrossRef
  27. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009 Nov 25;139(5):871-90. Review. PubMed, CrossRef
  28. Ozerdem U. Targeting of pericytes diminishes neovascularization and lymphangiogenesis in prostate cancer. Prostate. 2006 Feb 15;66(3):294-304. PubMed, CrossRef
  29. Kalinski T, Röpke A, Sel S, Kouznetsova I, Röpke M, Roessner A. Down-regulation of ephrin-A5, a gene product of normal cartilage, in chondrosarcoma. Hum Pathol. 2009 Dec;40(12):1679-85. Epub 2009 Aug 19. PubMed, CrossRef
  30. Sørensen KD, Borre M, Ørntoft TF, Dyrskjøt L, Tørring N. Chromosomal deletion, promoter hypermethylation and downregulation of FYN in prostate cancer. Int J Cancer. 2008 Feb 1;122(3):509-19. PubMed, CrossRef
  31. Blanc V, Nariculam J, Munson P, Freeman A, Klocker H, Masters J, Williamson M. A role for class 3 semaphorins in prostate cancer. Prostate. 2011 May;71(6):649-58. PubMed, CrossRef
  32. Strock CJ, Park JI, Nakakura EK, Bova GS, Isaacs JT, Ball DW, Nelkin BD. Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells. Cancer Res. 2006 Aug 1;66(15):7509-15. PubMed, CrossRef
  33. Eckfeld K, Hesson L, Vos MD, Bieche I, Latif F, Clark GJ. RASSF4/AD037 is a potential ras effector/tumor suppressor of the RASSF family. Cancer Res. 2004 Dec 1;64(23):8688-93. PubMed, CrossRef
  34. Shen LY, Chen KN. Exploration of target genes of HOXA13 in esophageal squamous cell carcinoma cell line. Cancer Lett. 2011 Dec 15;312(1):18-23.  PubMed, CrossRef
  35. Chand AL, Wijayakumara DD, Knower KC, Herridge KA, Howard TL, Lazarus KA, Clyne CD. The orphan nuclear receptor LRH-1 and ERα activate GREB1 expression to induce breast cancer cell proliferation. PLoS One. 2012;7(2):e31593. PubMed, PubMedCentral, CrossRef
  36. Hagelgans A, Menschikowski M, Fuessel S, Nacke B, Arneth BM, Wirth MP, Siegert G. Deregulated expression of urokinase and its inhibitor type 1 in prostate cancer cells: role of epigenetic mechanisms. Exp Mol Pathol. 2013 Jun;94(3):458-65. Epub 2013 Mar 27. PubMed, CrossRef
  37. McKee CM, Xu D, Muschel RJ. Protease nexin 1: a novel regulator of prostate cancer cell growth and neo-angiogenesis. Oncotarget. 2013 Jan;4(1):1-2. PubMed, PubMedCentral, CrossRef
  38. Patrikidou A, Vlachostergios PJ, Voutsadakis IA, Hatzidaki E, Valeri RM, Destouni C, Apostolou E, Daliani D, Papandreou CN. Inverse baseline expression pattern of the NEP/neuropeptides and NFκB/proteasome pathways in androgen-dependent and androgen-independent prostate cancer cells. Cancer Cell Int. 2011 May 15;11(1):13. PubMed, PubMedCentral, CrossRef
  39. Murthy S, Wu M, Bai VU, Hou Z, Menon M, Barrack ER, Kim SH, Reddy GP. Role of androgen receptor in progression of LNCaP prostate cancer cells from G1 to S phase. PLoS One. 2013;8(2):e56692. PubMed, PubMedCentral, CrossRef
  40. Lue HW, Yang X, Wang R, Qian W, Xu RZ, Lyles R, Osunkoya AO, Zhou BP, Vessella RL, Zayzafoon M, Liu ZR, Zhau HE, Chung LW. LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS One. 2011;6(11):e27720.  PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.