Ukr.Biochem.J. 2014; Volume 86, Issue 2, Mar-Apr, pp. 68-78

doi: http://dx.doi.org/10.15407/ubj86.02.068

Comparison of bioactive aldehydes modifying action on human albumin

I. P. Krysiuk, A. J. Knaub, S. G. Shandrenko

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
е-mail: iryna-kr@yandex.ua

Protein’s postsynthetic modifications are a cause and a consequence of many diseases. Endogenous aldehydes are one of the main factors of these modifications formation. The human albumin’s modification under some aldehydes influence in in vitro experiment has been investigated. Human albumin (20 mM) was incubated with following aldehydes: ribose, glyoxal, methylglyoxal and formaldehyde (20 mM each) and their combinations in 0.1 M Na-phosphate buffer (pH 7.4) with 0.02% sodium azide at 37 °C in the dark for up to 30 days. We have determined the fluorescent properties of the samples, the content of protein’s carbonyl groups and the redistribution of protein’s molecular weight.
The following ratings of aldehydes from the lowest to the highest effect have been obtained. Fluo­rescent albumin adducts formation: formaldehyde, methylglyoxal, ribose, glyoxal; carbonylation of the protein: ribose, formaldehyde, glyoxal, methyl­glyoxal; polymerization of albumin – the formation of intermolecular crosslinks: ribose, methylglyoxal, glyoxal, formaldehyde. The results indicate that these aldehydes have different capability for protein’s modifications. For example, formaldehyde, having the lowest ability to form fluorescent adducts, shows the highest ability to form protein’s intermolecular crosslinks. Therefore, methods and parame­ters in order to evaluate the protein postsynthetic modification intensity have to be chosen correctly according to carbonyl stress peculiarity in order to evaluate the protein’s postsynthetic modification intensity.

Keywords: , , , ,


References:

  1. Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otín M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 2003 Aug 15;22(16):4103-10. PubMed, PubMedCentral
  2. Haynes RL, Szweda L, Pickin K, Welker ME, Townsend AJ. Structure-activity relationships for growth inhibition and induction of apoptosis by 4-hydroxy-2-nonenal in raw 264.7 cells. Mol Pharmacol. 2000 Oct;58(4):788-94. PubMed
  3. Desai KM, Chang T, Wang H, Banigesh A, Dhar A, Liu J, Untereiner A, Wu L. Oxidative stress and aging: is methylglyoxal the hidden enemy? Can J Physiol Pharmacol. 2010 Mar;88(3):273-84. Review. PubMed, CrossRef
  4. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001 Feb;44(2):129-46. Review. PubMed
  5. Baynes JW. From life to death–the struggle between chemistry and biology during aging: the Maillard reaction as an amplifier of genomic damage. Biogerontology. 2000;1(3):235-46. Review. PubMed
  6. Mostafa AA, Randell EW, Vasdev SC, Gill VD, Han Y, Gadag V, Raouf AA, El Said H. Plasma protein advanced glycation end products, carboxymethyl cysteine, and carboxyethyl cysteine, are elevated and related to nephropathy in patients with diabetes. Mol Cell Biochem. 2007 Aug;302(1-2):35-42. PubMed
  7. Shaikh S, Nicholson LF. Advanced glycation end products induce in vitro cross-linking of alpha-synuclein and accelerate the process of intracellular inclusion body formation. J Neurosci Res. 2008 Jul;86(9):2071-82. PubMed, CrossRef
  8. Fuentealba D, Friguet B, Silva E. Advanced glycation endproducts induce photocrosslinking and oxidation of bovine lens proteins through type-I mechanism. Photochem Photobiol. 2009 Jan-Feb;85(1):185-94. PubMed, CrossRef
  9. Krautwald M, Münch G. Advanced glycation end products as biomarkers and gerontotoxins – A basis to explore methylglyoxal-lowering agents for Alzheimer’s disease? Exp Gerontol. 2010 Oct;45(10):744-51. Review. PubMed, CrossRef
  10. Schmitt A, Schmitt J, Münch G, Gasic-Milencovic J. Characterization of advanced glycation end products for biochemical studies: side chain modifications and fluorescence characteristics. Anal Biochem. 2005 Mar 15;338(2):201-15. PubMed
  11. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006 Aug 8;114(6):597-605. Review. PubMed
  12. Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA. Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem. 2008 Aug 8;283(32):21837-41.  Review. PubMed, PubMedCentral, CrossRef
  13. Cloos PA, Christgau S. Non-enzymatic covalent modifications of proteins: mechanisms, physiological consequences and clinical applications. Matrix Biol. 2002 Jan;21(1):39-52. Review. PubMed
  14. Desai KM, Wu L. Free radical generation by methylglyoxal in tissues. Drug Metabol Drug Interact. 2008;23(1-2):151-73. Review. PubMed
  15. Kuhla B, Lüth HJ, Haferburg D, Boeck K, Arendt T, Münch G. Methylglyoxal, glyoxal, and their detoxification in Alzheimer’s disease. Ann N Y Acad Sci. 2005 Jun;1043:211-6. PubMed
  16. Glenn JV, Stitt AW. The role of advanced glycation end products in retinal ageing and disease. Biochim Biophys Acta. 2009 Oct;1790(10):1109-16. Review. PubMed, CrossRef
  17. Kalousová M, Zima T, Tesar V, Dusilová-Sulková S, Skrha J. Advanced glycoxidation end products in chronic diseases-clinical chemistry and genetic background. Mutat Res. 2005 Nov 11;579(1-2):37-46. Epub 2005 Aug 5. Review. PubMed
  18. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464-78. PubMed
  19. Zaytseva OV, Shandrenko SG. Modification of spectrophotometric method of determination of protein carbonyl groups. Ukr Biokhim Zhurn. 2012 Sep-Oct;;84(5):112-116. Ukrainian. PubMed
  20. Volodina ТТ, Pechenova ТМ, Dzvonkevich ND, Popova NМ, Silonova NV, Astahova VS, Panchenko LМ, Guly MF, Mikhaylovsky VО. Modifying effect of lowmolecular metabolities on the state of extracellular matrix of connective tissue of animals. Ukr Biokhim Zhurn. 2007 Nov-Dec;79(6):65-73. Ukrainian. PubMed
  21. Shandrenko SG, Golovin AS, Dmitrenko NP, Yurchenko AI, Babicheva AF. Computer registration and analysis of thin-layer chromatography results. Zhurn Khromatogr. T-va. 2003;2(4):22-30.
  22. Meerwaldt R, Graaff R, Oomen PH, Links TP, Jager JJ, Alderson NL, Thorpe SR, Baynes JW, Gans RO, Smit AJ. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004 Jul;47(7):1324-30. PubMed
  23. Medina-Navarro R, Nieto-Aguilar R, Alvares-Aguilar C. Protein conjugated with aldehydes derived from lipid peroxidation as an independent parameter of the carbonyl stress in the kidney damage. Lipids Health Dis. 2011 Nov 7;10:201. PubMed, PubMedCentral, CrossRef
  24. Halliwell B., Gutteridge J. M. Free Radicals in Biology and Medicine. Oxford, USA: Clarendon Press, 2007. 704 p.
  25. Hofmann B, Adam AC, Jacobs K, Riemer M, Erbs C, Bushnaq H, Simm A, Silber RE, Santos AN. Advanced glycation end product associated skin autofluorescence: a mirror of vascular function? Exp Gerontol. 2013 Jan;48(1):38-44. PubMed, CrossRef
  26. Makulska I, Szczepańska M, Drożdż D, Polak-Jonkisz D, Zwolińska D. Skin autofluorescence as a marker of cardiovascular risk in children with chronic kidney disease. Pediatr Nephrol. 2013 Jan;28(1):121-8. PubMed, PubMedCentral, CrossRef
  27. de Vos LC, Noordzij MJ, Mulder DJ, Smit AJ, Lutgers HL, Dullaart RP, Kamphuisen PW, Zeebregts CJ, Lefrandt JD. Skin autofluorescence as a measure of advanced glycation end products deposition is elevated in peripheral artery disease. Arterioscler Thromb Vasc Biol. 2013 Jan;33(1):131-8. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.