Tag Archives: aldehydes

Oxidative stress and the enzyme system of aldehyde catabolism in the muscle mitochondria of immobilized pubertal rats

Amjad Hamdallah1, V. V. Davydov2, V. N. Shvets3

1V. N. Karazin Kharkiv National University, Ukraine;
2SU Institute of Children and Adolescent Health Care, National Academy
of Medical Science of Ukraine;
3Zaporizhzhia State Medical University, Ukraine;
e-mail: vaddavydov@mail.ru

The aim of the work is to find out peculiarities in manifestation of oxidative stress and to determine activity of enzymes, responsible for utilization of endogenous aldehydes in the mitochondrial fraction of the skeletal (femoral) muscle in pubertal rats during immobilization stress. Our study has shown that differently directed changes in the activity of mitochondrial aldehyde dehydrogenases and aldehyde reductases occur in the pubertal immobilized rats, that limits the catabolism effectiveness as regards carbonyl products of free radical oxidation in the muscle cells.  Corroboration of the effect under consideration is an increased level of protein free radical oxidation products in the mitochondria of the skeletal muscle. On the basis of the obtained data the authors draw a conclusion about an increased sensitivity of the skeletal muscle to the oxidative stress impact due to modulation in the state of enzyme system, responsible for utilization of endogenous aldehydes in the mitochondria.

Influence of semicarbazide on the peroxidation processes and Lewis carcinoma growth in mice

L. M. Petrun

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: petrun@biochem.kiev.ua

Effects of various doses of semicarbazide on Lewis carcinoma metastasing and peroxidation processes in С57В1 mice have been investigated. In the animals with inoculated Lewis carcinoma, the semicarbazide in the dose of 1/120 LD50 had practical influence on the tumour growth and inhibited the metastasing into mice lungs (P < 0.05). Importantly, this dose significantly inhibited the formation of free radicals and active forms of oxygen against the background of decrease of the aldehydes level that was related to the acceptor properties of the drug.

Aldehydes participation in oxidative stress in rat thymocytes in vitro

K. О. Tokarchuk, О. V. Zaitseva

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: kate_tokarchuk@ukr.net

A variety of lipid radicals are formed under oxidative stress development. The further oxidation of these radicals leads to formation of numerous aldehydes. They can form postsynthetic modifications in proteins and nucleic acids that disrupt their functions. In the present study aldehydes role in the formation of oxidative stress parameters in rat thymocytes was investigated. Two models were used: iron-stimulated oxidative stress and exogenous aldehydes exposure to thymocytes.
For oxidative stress induction, thymocytes (2×106 cells/ml HBSS, рН 7.2) were exposed to different concentrations of FeSO4 (20, 30, 40 μМ) and ascorbic acid (100 μМ) for 6 h. It resulted in increase of levels of aldehydes 29 times (90 ± 6 nmol/107 cells), these changes led to increase of TBARS levels 4.4 times; the levels of protein CO groups 10 times, cell mitochondrial activity and low-molecular weight SH groups were decreased 1.5 and 2.3 times, respectively. Treatment with aldehydes acceptor dimedone (200 μМ) significantly decreased the levels of aldehydes 3.7 times, TBARS 1.6 times and protein CO groups 5 times. It was shown that the levels of cell mitochondrial activity increase 1.4 times and the levels of SH groups 1.8 times.
To compare the effects of aldehydes in induction of oxidative stress, thymocytes (2×106 cells/ml HBSS, рН 7.2) were exposed to 50-600 μМ formaldehyde (FA), 50-600 μМ glyoxal (GL), 50-600 μМ methylglyoxal (MGL), 1-15 μМ acrolein (АCR) for 6 h. TBARS levels were increased for FA 1.3 times and for other aldehydes  about 5-7 times. The levels of protein CO groups were increase for FA 3.7 times, for MGL 7 times, for GL 13 times, for ACR 22 times. Levels of SH groups were decreased for FA 1.5 times, for MGL 2.6 times, for GL 3 times, for ACR 9 times. A decrease of cell mitochondrial activity 1.5 times observe for all aldehydes. Obtained results prove the aldehydes participation in the formation of oxidative stress parameters and their capability to oxidative stress induction in the rat thymocytes.

Comparison of bioactive aldehydes modifying action on human albumin

I. P. Krysiuk, A. J. Knaub, S. G. Shandrenko

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
е-mail: iryna-kr@yandex.ua

Protein’s postsynthetic modifications are a cause and a consequence of many diseases. Endogenous aldehydes are one of the main factors of these modifications formation. The human albumin’s modification under some aldehydes influence in in vitro experiment has been investigated. Human albumin (20 mM) was incubated with following aldehydes: ribose, glyoxal, methylglyoxal and formaldehyde (20 mM each) and their combinations in 0.1 M Na-phosphate buffer (pH 7.4) with 0.02% sodium azide at 37 °C in the dark for up to 30 days. We have determined the fluorescent properties of the samples, the content of protein’s carbonyl groups and the redistribution of protein’s molecular weight.
The following ratings of aldehydes from the lowest to the highest effect have been obtained. Fluo­rescent albumin adducts formation: formaldehyde, methylglyoxal, ribose, glyoxal; carbonylation of the protein: ribose, formaldehyde, glyoxal, methyl­glyoxal; polymerization of albumin – the formation of intermolecular crosslinks: ribose, methylglyoxal, glyoxal, formaldehyde. The results indicate that these aldehydes have different capability for protein’s modifications. For example, formaldehyde, having the lowest ability to form fluorescent adducts, shows the highest ability to form protein’s intermolecular crosslinks. Therefore, methods and parame­ters in order to evaluate the protein postsynthetic modification intensity have to be chosen correctly according to carbonyl stress peculiarity in order to evaluate the protein’s postsynthetic modification intensity.

Effect of bioactive aldehydes on gelatin properties

I. P. Krysyuk, N. D. Dzvonkevych, T. T. Volodina, N. N. Popova, S. G. Shandrenko

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
е-mail: iryna-kr@yandex.ua

Bioactive aldehydes are among main factors of proteins postsynthetic modifications, which are the cause and consequence of many diseases. Comparative study of some aldehydes modifying action on gelatin was carried out in vitro. Gelatin samples (20 mM) were incubated with: ribose, deoxyribose, glyoxal, methylglyoxal, formaldehyde, acrolein (20 mM each) and their combinations in 0.1  M Na-phosphate buffer (pH 7.4) containing 0.02% sodium azide at 37 °C in the dark for 30 days. We investigated the fluorescent properties of these samples and their molecular weight distribution by electrophoresis. It has been revealed that formed adducts had different fluorescence spectra. According to fluorescence intensity these aldehydes were put in order: formaldehyde < methylglyoxal < acrolein < ribose < deoxy­ribose < glyoxal. The electrophoresis results showed fragments of gelatin molecular weight redistribution. By this index, the aldehydes rating was as follows: ribose < deoxyribose < acrolein < glyoxal < formaldehyde < methylglyoxal. Comparison of these two ratings indicates that aldehydes with a lower ability to form fluorescent adducts have higher abili­ty to form intermolecular crosslinks. Therefore, the traditional clinical fluorescent test of a patients’ skin surface for collagen crosslinks determination has to be verified by other tests for proteins postsynthetic modifications.