Ukr.Biochem.J. 2014; Volume 86, Issue 4, Jul-Aug, pp. 36-50

doi: http://dx.doi.org/10.15407/ubj86.04.036

Markers and regulatory mechanisms in ovarian carcinoma

S. Ya. Paryzhak, O. I. Yakubets, Z. D. Vorobets

Lviv Danylo Halytsky National Medical University, Ukraine;
e-mail: vorobets@meduniv.lviv.ua

Оvarian carcinoma is one of widely spread malignant diseases of female reproductive system. Mortality rate from it is much higher than from other female malignant diseases. During last 20 years the level of ovarian carcinoma in Ukraine and vast majority of other countries remains high manifesting­ no signs of decrease. This arouses interest of researchers­ to development of new methods of early diagnosis, therapeutic approach, prognostic criteria, especially biochemical ones, and means of prophylaxis of this pathology in medical scientific society. At present there are no specific diagnostic tests which would allow revealing the tumor on the initial stages of its development. In spite of vide arsenal of tumor markers­, the only reliable test for ovarian carcinoma is determination of antigen СА 125. The results of basic modern research are discussed in this survey. They are aimed at finding out regulatory mechanisms connected with metabolism of L-arginine, activities of ATP-hydrolase systems and searching new markers of ovarian carcinoma. The main possible candidates for this role are determined.

Keywords: , , , , ,


References:

  1. Urmancheeva АF, Tjuljandin SA, Moise­jenko VM. Practical oncogynecology. Selected lectures. Centre TOMM, St. Petersburg, 2008. P. 368-375. (In Russian).
  2. Perevodchikova N I. Malignant diseases chemotherapy guide. M: Practical medicine, 2011. P. 196-207. (In Russian).
  3. Disaia PJ, Creasman WT. Clin. Oncol. Gynecol. M: Rid Elsiver, 2012. P. 44-137, 207-232.
  4. Vorobyova L, Svintsitsky V, Tkalya J. Hormonal carcinogenesis and rationale for the use of hormone therapy in the treatment of patients with ovarian cancer (review). J. Clin. Oncol. 2013;1(9):56-64. (In Russian).
  5. Cancer in Ukraine, 2010-2011. Morbidity, mortality indices of Oncology Service. Bulletin of national cancer registry of Ukraine.  Kyiv, 2012. P. 52–53. (In Ukrainian).
  6. Cancer Incidence in Five Continents Vol. IX, IARC 2007.  897 p. Available at http:. www.iarc.fr. en. publications. pdfs-online. epi. sp160. index.php.
  7. Hiljatudzinova Z. Oncogynaecology: a Guide for physicians. Ed. by M. K. Mikhailov. M: MEDpress, 2000. 384 p.
  8. Vorobyova L, Svintsitsky V. Modern tactics of malignant ovary tumors treatment. Female Reproductive Health. 2005;3(23):179-186. (In Russian)
  9. Shamraj DV, Melnyk NA, Chajkovsky JuB. Hormonal carcinogenesis of the ovary and its modeling methods. Clin Anat Oper Surg. 2010;9(2):126-130.
  10. Choi JH, Wong AS, Huang HF, Leung PC. Gonadotropins and ovarian cancer. Endocr Rev. 2007 Jun;28(4):440-61. Review. PubMed
  11. Zheng H, Kavanagh JJ, Hu W, Liao Q, Fu S. Hormonal therapy in ovarian cancer. Int J Gynecol Cancer. 2007 Mar-Apr;17(2):325-38. Review. PubMed
  12. Choi KC, Kang SK, Tai CJ, Auersperg N, Leung PC. Follicle-stimulating hormone activates mitogen-activated protein kinase in preneoplastic and neoplastic ovarian surface epithelial cells. J Clin Endocrinol Metab. 2002 May;87(5):2245-53. PubMed, CrossRef
  13. Tashiro H, Katabuchi H, Begum M, Li X, Nitta M, Ohtake H, Okamura H. Roles of luteinizing hormone/chorionic gonadotropin receptor in anchorage-dependent and -independent growth in human ovarian surface epithelial cell lines. Cancer Sci. 2003 Nov;94(11):953-9. PubMed, CrossRef
  14. Landen CN Jr, Birrer MJ, Sood AK. Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol. 2008 Feb 20;26(6):995-1005. Review. PubMed, CrossRef
  15. Karseladze AI. Some fundamental notions of oncomorphology in the light of modern molecular biology advances. Arkh Patol. 2009 Sep-Oct;71(5):17-20. Review. Russian. PubMed
  16. Vyshenskyi AS, Skryabin ON. Ovarian tumors. Obstetrics and gynecology. St. Petersburg, 2000. P. 1–11. (In Russian).
  17. Sergeeva NS, Marshutina NV. General ideas about the serological biomarkers and their place in Oncology. Practical oncology. 2011;12(4):147–154. (In Russian).
  18. Aleksejeva ML, Gusarova EV, Mullaba­jeva SM, Ponkratova TS. Oncomarkers, their characteristic and some aspects of clinico-diagnostic use. (review). Reproduction Problems.  2005;(3):65–79. (In Russian).
  19. Lenhard M, Tsvilina A, Schumacher L, Kupka M, Ditsch N, Mayr D, Friese K, Jeschke U. Human chorionic gonadotropin and its relation to grade, stage and patient survival in ovarian cancer. BMC Cancer. 2012 Jan 3;12:2. PubMed, PubMedCentral, CrossRef
  20.  Nechaeva ID. Ovarian tumors. L.: Medicine, 1987. 208 p. (In Russian).
  21. Abelev GI. Alpha-fetoprotein: biology, biochemistry, molecular genetics. Immuno­logy. 1993;(3):4-10. (In Russian).
  22. Nomelini RS, de Abreu Ribeiro LC, Tavares-Murta BM, Adad SJ, Murta EFC. Production of nitric oxide and expression of inducible nitric oxide synthase in ovarian cystic tumors. Mediators Inflamm. 2008;2008:1-7. CrossRef
  23. Jermoshyna NV, Sergeeva NS, Achme­dova SA, Mishunina MP, Novikova EG. Tumor-associated antigen СА 125 in normal and pathological states. Vopr. Onkol. 2000;46(5):529–537. (In Russian).
  24. Markman M, Webster K, Zanotti K, Peter­son G, Kulp B, Belinson J. Examples of the marked variability in the relationship between the serum CA-125 antigen level and cancer-related symptoms in ovarian cancer.  Gynecol Oncol. 2004 Jun;93(3):715–7. PubMed, CrossRef
  25. Chernyshova AL, Churuksaeva ON. The role of tumor-associated marker СА-125 in detection of ovarian cancer recurrence. Siberian J Oncol. 2010;3(39):34–37. (In Russian).
  26. Bast RC. CA 125 antigen from idea to the clinical application. Anticancer Res. 1993;13:1636–1638.
  27. Africjan MN, Zordania KI. Clinical evaluation carbohydrate antigen CA 125 application in the process of diagnosis and management of patients with ovarian cancer. Vestnik VONC АМS SSR. 1990;(2):22-24. (In Russian).
  28. Korneeva IA, Novikova EG, Sergeeva NS. Evolution of a view on the marker recurrence of ovarian cancer. Rus. J. Oncol. 2010;(2):54–57. (In Russian).
  29. Kim H., Ju W. The efficacy of systemic lymphadenonectomy for overal survival in epithelial ovarian cancer; A systematic review and meta-analysis by KOGYMAG. J. Clin. Oncol. 2009;27. Abs. E16509.
  30. Kandylis K, Vassilomanolakis M, Baziotis N, Papadimitriou A, Tsoussis S, Ferderigou A, Efremidis AP. Diagnostic significance of the tumour markers CEA, CA 15-3 and CA 125 in malignant effusions in breast cancer. Ann Oncol. 1990 Nov;1(6):435-8. PubMed
  31. Picardo AL, Torres AJ, Maestro M, Ortega D, Garcia-Asenjo JA, Mugüerza JM, Hernando F, Diez M, Balibrea JL. Quantitative analysis of carcinoembryonic antigen, squamous cell carcinoma antigen, CA 125, and CA 50 cytosolic content in non-small cell lung cancer. Cancer. 1994 May 1;73(9):2305-11. PubMed, CrossRef
  32. Fateh-Moghadam A, Stieber P. Sensible use of tumor markers. Ed. by J. Hartmann. Basel. Switzerland: Springer Verlag. Editiones Roche, 1993. P. 36-37.
  33. Webb A, Scott-Mackie P, Cunningham D, Norman A, Andreyev J, O’Brien M, Bensted J. The prognostic value of serum and immunohistochemical tumour markers in advanced gastric cancer. Eur J Cancer. 1996 Jan;32A(1):63-8. PubMed, CrossRef
  34. Leake J, Woolas RP, Daniel J, Oram DH, Brown CL. Immunocytochemical and serological expression of CA 125: a clinicopathological study of 40 malignant ovarian epithelial tumours. Histopathology. 1994 Jan;24(1):57-64.  PubMedCrossRef
  35. Van den Berghe H, Dal Cin P. Some genetic aspects of ovarian tumors. Eur J Obstet Gynecol Reprod Biol. 1998 Dec;81(2):283-7. Review. PubMed, CrossRef
  36. Chanson K. P., Imyanitov E. N. Molecular genetics of ovarian cancer. Pract. Oncol. 2000;1(4):3–6. (In Russian).
  37. Lenoir GM, Lynch H, Watson P, Conway T, Lynch J, Narod S, Feunteun J. Familial breast-ovarian cancer locus on chromosome 17q12-q23. Lancet. 1991 Jul 13;338(8759):82-3. PubMed, CrossRef
  38. Takahashi H, Chiu HC, Bandera CA, Behbakht K, Liu PC, Couch FJ, Weber BL, LiVolsi VA, Furusato M, Rebane BA, Cardonick A, Benjamin I, Morgan MA, King SA, Mikuta JJ, Rubin SC, Boyd J. Mutations of the BRCA2 gene in ovarian carcinomas. Cancer Res. 1996 Jun 15;56(12):2738-41. PubMed
  39. Imyanitov EN, Chernitsa OI, Serova OM, Knyazev PG. Rare occurrence of amplification of HER-2 (erbB-2/neu) oncogene in ovarian cancer patients. Eur J Cancer. 1992;28A(6-7):1300. PubMed, CrossRef
  40. Imyanitov EN. Molecular mechanisms of tumor growth. Vopr Onkol. 2010;56(2):117–128. (In Russian).
  41. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. Review. PubMed, CrossRef
  42. Cloven NG, Kyshtoobayeva A, Burger RA, Yu IR, Fruehauf JP. In vitro chemoresistance and biomarker profiles are unique for histologic subtypes of epithelial ovarian cancer. Gynecol Oncol. 2004 Jan;92(1):160-6. PubMed, CrossRef
  43. Kopnin BP. Targets of oncogenes and tumor suppressors: key for understanding basic mechanisms of carcinogenesis. Biochemistry (Mosc). 2000 Jan;65(1):2-27. Review. PubMed
  44. Kopnin BP, Kopnin PB, Khromova NV, Agapova LS. Multifaced р53: variety of forms, functions, tumor-suppressive and oncogenic activities. J Clin Oncol. 2008;5(1):3–10. (In Russian).
  45.  Antoneeve I. I., Petrov S. B. Markers of apoptosis and proliferation of tumor cells in the dynamics of ovarian cancer progressions. Oncology. 2008;10(2):234–237. (In Russian).
  46. Milner BJ, Allan LA, Eccles DM, Kitchener HC, Leonard RC, Kelly KF, Parkin DE, Haites NE. p53 mutation is a common genetic event in ovarian carcinoma. Cancer Res. 1993 May 1;53(9):2128-32. PubMed
  47. Shelling AN. Role of p53 in drug resistance in ovarian cancer. Lancet. 1997 Mar 15;349(9054):744-5. PubMed, CrossRef
  48. McMenamin ME, O’Neill AJ, Gaffney EF. Extent of apoptosis in ovarian serous carcinoma: relation to mitotic and proliferative indices, p53 expression, and survival. Mol Pathol. 1997 Oct;50(5):242-6. PubMed, PubMedCentral, CrossRef
  49. Yamasaki F, Tokunaga O, Sugimori H. Apoptotic index in ovarian carcinoma: correlation with clinicopathologic factors and prognosis. Gynecol Oncol. 1997 Sep;66(3):439-48. PubMed
  50. Yang G., Rosen D G, Mercado-Uribe I, Colacino JA, Mills GB, Bast RC, Jr, Zhou C, Liu J. Knockdown of p53 combined with expression of the catalytic subunit of telomerase is sufficient to immortalize primary human ovarian surface epithelial cells. Carcinogenesis. 2007;28(1):174–182. PubMed, CrossRef
  51. Murakami J, Nagai N, Ohama K, Tahara H, Ide T. Telomerase activity in ovarian tumors. Cancer. 1997 Sep 15;80(6):1085-92. PubMed, CrossRef
  52. Imyanitov EN, Birrell GW, Filippovich I, Sorokina N, Arnold J, Mould MA, Wright K, Walsh M, Mok SC, Lavin MF, Chenevix-Trench G, Khanna KK. Frequent loss of heterozygosity at 1p36 in ovarian adenocarcinomas but the gene encoding p73 is unlikely to be the target. Oncogene. 1999 Aug 12;18(32):4640-2. PubMed, CrossRef
  53. Manojlov SE. History and evolution of the views about the theoretical basis of the process of carcinogenesis. Vopr Onkol. 1998;44(3):357-9. Review. Russian. PubMed
  54. Zorin N. A., Zorin V. N., Zorin R. M. α2-macroglobulin the universal modulator of cytokines (review). Immunology.  2004;25(5):302–304. (In Russian).
  55. Tomsová M, Melichar B, Sedláková I, Steiner I. Prognostic significance of CD3+ tumor-infiltrating lymphocytes in ovarian carcinoma. Gynecol Oncol. 2008 Feb;108(2):415-20. Epub 2007 Nov 26. PubMed, CrossRef
  56. Gavalas NG, Karadimou A, Dimopoulos MA, Bamias A. Immune response in ovarian cancer: how is the immune system involved in prognosis and therapy: potential for treatment utilization. Clin Dev Immunol. 2010;2010:791603. Review. PubMed, PubMed, CrossRef
  57.  Bamias A, Koutsoukou V, Terpos E, Tsiatas ML, Liakos C, Tsitsilonis O, Rodolakis A, Voulgaris Z, Vlahos G, Papageorgiou T, Papatheodoridis G, Archimandritis A, Antsaklis A, Dimopoulos MA. Correlation of NK T-like CD3+CD56+ cells and CD4+CD25+(hi) regulatory T cells with VEGF and TNFalpha in ascites from advanced ovarian cancer: Association with platinum resistance and prognosis in patients receiving first-line, platinum-based chemotherapy. Gynecol Oncol. 2008 Feb;108(2):421-7. PubMed, PubMed
  58. Kurlishchuk YV, Bobak YP, Vynnytska BO, Stasyk O. Role of The role of arginine meta­bolic enzymes in response of tumor cells to deficient of arginin. Ukr. Biokhim. Zhurn. 2010;82(4, Addition 2):23. (In Ukrainian).
  59. Kurlishchuk YV, Vynnytska-Myronovska BO, Bobak YP, Sibirny АА, Stasyk OV. Influence of arginine metabolites on human tumor cell viability upon arginine deprivation in vitro. Studia Biologica. 201;5(2):5–16. (In Ukrainian).
  60. Yakubets’ O. I., Vorobets’ D. Z., Vorobets’ Z. D. Arginase activity of peripheral blood lymphocytes in patients with ovarian carcinoma. Buk. Med. Herald. 2012;16(4):187–190. (In Ukrainian).
  61. Broholm H., Brandstrup O., Lauritzen M. Nitric oxide synthase expression of oligodendro­gliomas. Clin Neuropathol. 2001 Nov-Dec;20(6):233-8. PubMed
  62. Fukuzawa K, Kogure K, Morita M, Hama S, Manabe S, Tokumura A. Enhancement of nitric oxide and superoxide generations by alpha-tocopheryl succinate and its apoptotic and anticancer effects. Biochemistry (Mosc). 2004 Jan;69(1):50-7. Review. PubMed, CrossRef
  63. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006 Jul;6(7):521-34. Review. PubMed, CrossRef
  64. Karimov KhY, Inoyatova FKh, Mukhamedova MT. Changes in some indices of the synthesis of nitric oxide during the early stages of hepatocarcinogenesis. Exp Toxicol Pathol. 2003 Jul;55(1):17-9. PubMed, CrossRef
  65. Lyu MB, Podobets IS, Edigenova AK, Lyu BN. Oxygen active forms and peroxyge­nation in invasion and metastasis of neoplasm. Advances in Modern Biology. 2004;124(4):329–341. (In Russian).
  66. Bondar TN. L-arginin. nitric oxide system and immunity. Exp Clin Med. 2009;(3): 4–8. (In Russian).
  67. Muntané J, la Mata MD. Nitric oxide and cancer. World J Hepatol. 2010 Sep 27;2(9):337-44. PubMed, PubMedCentral, CrossRef
  68. Yakubets’ OI, Fafula RV, Vorobets’ DZ, Vorobets’ ZD. Peculiarities of arginase and NO-synthase pathways of L-arginine metabolism in peripheral blood lymphocytes in patients with ovarian cancer. Ukr Biokhim Zhurn. 2013 Sep-Oct;85(5):105-113. Ukrainian. PubMed
  69. Morris SM Jr. Arginine: beyond protein. Am J Clin Nutr. 2006 Feb;83(2):508S-512S. Review. PubMed
  70. Naderpour M, Rad JS, Ayat E, Mesgari M, Farahani RM, Roshangar L, Tubbs RS, Shoja MM. Dietary L-arginine and cutaneous wound healing. Ital J Anat Embryol. 2008 Jul-Sep;113(3):135-42. PubMed
  71. Daghigh F., Fukuto J. M., Ash D. E. Inhibition of rat liver arginase by an intermediate in NO biosynthesis, NG-Hydroxy-L-arginine: implications for the regulation of nitric oxide biosynthesis by arginase. Biochem. Bioph. Res. Com. 1994 Jul 15;202(1):174–80. PubMed, CrossRef
  72. Boucher JL1, Custot J, Vadon S, Delaforge M, Lepoivre M, Tenu JP, Yapo A, Mansuy D. N[omega]-Hydroxy-L-Arginine, an intermediate in the L-arginine to Nitric Oxide pathway, is a strong inhibitor of liver and macrophage arginase.  Biochem Biophys Res Commun. 1994 Sep 30;203(3):1614-21. PubMed, CrossRef
  73. Ray RM, Zimmerman BJ, McCormack SA, Patel TB, Johnson LR. Polyamine depletion arrests cell cycle and induces inhibitors p21(Waf1/Cip1), p27(Kip1), and p53 in IEC-6 cells. Am J Physiol. 1999 Mar;276(3 Pt 1):C684-91. PubMed
  74. Peranzoni E, Marigo I, Dolcetti L, Ugel S, Sonda N, Taschin E, Mantelli B, Bronte V, Zanovello P. Role of arginine metabolism in immunity and immunopathology. Immunobiology. 2007;212(9-10):795-812. Review. PubMed, CrossRef
  75. Modolell M, Corraliza IM, Link F, Soler G, Eichmann K. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur J Immunol. 1995 Apr;25(4):1101-4.  PubMed, CrossRef
  76. Munder M, Eichmann K, Modolell M. Alter­native metabolic states in murine macrophages reflected by the nitric oxide synthase. arginase balance: competitive regulation by CD4+ T cells correlates with Th1. Th2 phenotype. J. Immunol. 1998;160:5347–5354.
  77. Burke F, Knowles RG, East N, Balkwill FR. The role of indoleamine 2,3-dioxygenase in the anti-tumour activity of human interferon-gamma in vivo. Int J Cancer. 1995 Jan 3;60(1):115-22. PubMed
  78. Burke F, Smith PD, Crompton MR, Upton C, Balkwill FR. Cytotoxic response of ovarian cancer cell lines to IFN-gamma is associated with sustained induction of IRF-1 and p21 mRNA. Br J Cancer. 1999 Jun;80(8):1236-44. PubMedPubMedCentral
  79. Pujade-Lauraine E1, Guastalla JP, Colombo N, Devillier P, François E, Fumoleau P, Monnier A, Nooy M, Mignot L, Bugat R, Marques C, Mousseau M, Netter G, Maloisel F, Larbaoui S, Brandely M. Intraperitoneal recombinant interferon gamma in ovarian cancer patients with residual disease at second-look laparotomy. J Clin Oncol. 1996 Feb;14(2):343-50. PubMed
  80. Windbichler GH, Hausmaninger H, Stummvoll W, Graf AH, Kainz C, Lahodny J, Denison U, Müller-Holzner E, Marth C. Interferon-gamma in the first-line therapy of ovarian cancer: a randomized phase III trial. Br J Cancer. 2000 Mar;82(6):1138-44. PubMed, PubMedCentral
  81. Son KK, Hall KJ. Nitric oxide-mediated tumor cell killing of cisplatin-based interferongamma gene therapy in murine ovarian carcinoma. Cancer Gene Ther. 2000 Oct;7(10):1324-8. PubMed, CrossRef
  82. Rieder J, Jahnke R, Schloesser M, Seibel M, Czechowski M, Marth C, Hoffmann G. Nitric oxide-dependent apoptosis in ovarian carcinoma cell lines. Gynecol Oncol. 2001 Jul;82(1):172-6. PubMed, CrossRef
  83. Anttila MA, Voutilainen K, Merivalo S, Saarikoski S, Kosma VM. Prognostic significance of iNOS in epithelial ovarian cancer. Gynecol Oncol. 2007 Apr;105(1):97-103.  PubMed, CrossRef
  84. Leung EL, Fraser M, Fiscus RR, Tsang BK. Cisplatin alters nitric oxide synthase levels in human ovarian cancer cells: involvement in p53 regulation and cisplatin resistance. Br J Cancer. 2008 Jun 3;98(11):1803-9. PubMedPubMedCentralCrossRef
  85. Kaplia AA, Hiznyak SV, Kudryavceva AG, Papageorgakopoulou N, Osinsky DC. Na+,K+-ATPase and Ca2+-ATPase isozymes in malignant neoplasms. Ukr Biokhim Zhurn. 2006 Jan-Feb;78(1):29-42. Russian. PubMed
  86. Yakubets’ OI, Vorobets’ DZ, Vorobets’ ZD. Herald of the Dnepropetrovsk National University. Series «Biology. Medicine». 2012;3(1):146–151. (In Ukrainian).
  87. Kaplia AA, Kudryavceva AG, Gorchev VF, Osinsky DC, Hiznyak SV. Determination of Na+,K+-ATPase activity in human colorectal carcinoma. Ukr Biokhim Zhurn. 2006 Mar-Apr;78(2):142-8. Russian. PubMed
  88. Mathé G, Kidani Y, Segiguchi M, Eriguchi M, Fredj G, Peytavin G, Misset JL, Brienza S, de Vassals F, Chenu E, Bourut C. Oxalato-platinum or 1-OHP, a third-generation platinum complex: an experimental and clinical appraisal and preliminary comparison with cis-platinum and carboplatinum. Biomed Pharmacother. 1989;43(4):237-50. PubMed, CrossRef
  89. Sherman-Baust CA, Weeraratna AT, Rangel LB, Pizer ES, Cho KR, Schwartz DR, Shock T, Morin PJ. Remode­ling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell. 2003 Apr;3(4):377–86. PubMed, CrossRef
  90. Varma RR, Hector SM, Clark K, Greco WR, Hawthorn L, Pendyala L. Gene expression profiling of a clonal isolate of oxaliplatin-resistant ovarian carcinoma cell line A2780/C10. Oncol Rep. 2005 Oct;14(4):925-32. PubMed, CrossRef
  91. Hector S, Nava ME, Clark K, Murphy M, Pendyala L. Characterization of a clonal isolate of an oxaliplatin resistant ovarian carcinoma cell line A2780/C10. Cancer Lett. 2007 Jan 8;245(1-2):195-204. PubMed, CrossRef
  92. Tse JC, Kalluri R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 2007 Jul 1;101(4):816-29. Review. PubMed, CrossRef
  93. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007 Jun;39(3):305-18. Review. PubMed, CrossRef
  94. Rajasekaran SA, Palmer LG, Quan K, Harper JF, Ball WJJr., Bander NH, Peralta SA, Rajasekaran AK. Na,K-ATPase beta-subunit is required for epithelial polarization, suppression of invasion, and cell motility. Mol Biol Cell. 2001 Feb;12(2):279–95. PubMed, PubMedCentralCrossRef
  95. Espineda CE, Chang JH, Twiss J, Rajasekaran SA, Rajasekaran AK. Repression of Na,K-ATPase beta1-subunit by the transcription factor snail in carcinoma. Mol Biol Cell. 2004 Mar;15(3):1364-73. Epub 2003 Dec 29. PubMed, PubMedCentral, CrossRef
  96. Rajasekaran SA, Gopal J, Willis D, Espineda C, Twiss JL, Rajasekaran AK. Na,K-ATPase beta1-subunit increases the translation efficiency of the alpha1-subunit in MSV-MDCK cells. Mol Biol Cell. 2004 Jul;15(7):3224-32. PubMedPubMedCentral, CrossRef
  97. Inge LJ, Rajasekaran SA, Yoshimoto K, Mischel PS, McBride W, Landaw E, Rajasekaran AK. Evidence for a potential tumor suppressor role for the Na,K-ATPase beta1-subunit. Histol Histopathol. 2008 Apr;23(4):459-67. PubMed, PubMedCentral
  98. Rajasekaran SA, Huynh TP, Wolle DG, Espineda CE, Inge LJ, Skay A, Lassman C, Nicholas SB, Harper JF, Reeves AE, Ahmed MM, Leatherman JM, Mullin JM, Rajasekaran AK. Na,K-ATPase subunits as markers for epithelial-mesenchymal transition in cancer and fibrosis. Mol Cancer Ther. 2010 Jun;9(6):1515-24. Epub 2010 May 25. PubMed, PubMedCentral, CrossRef
  99. Tummala R, Wolle D, Barwe SP, Sampson VB, Rajasekaran AK, Pendyala L. Expression of Na,K-ATPase-beta(1) subunit increases uptake and sensitizes carcinoma cells to oxaliplatin. Cancer Chemother Pharmacol. 2009 Nov;64(6):1187-94. PubMed, PubMedCentral, CrossRef
  100. Shoshani L, Contreras RG, Roldán ML, Moreno J, Lázaro A, Balda MS, Matter K, Cereijido M. The polarized expression of Na+,K+-ATPase in epithelia depends on the association between beta-subunits located in neighboring cells. Mol Biol Cell. 2005 Mar;16(3):1071-81. PubMed, PubMedCentral, CrossRef
  101. Vagin O, Tokhtaeva E, Sachs G. The role of the beta1 subunit of the Na,K-ATPase and its glycosylation in cell-cell adhesion. J Biol Chem. 2006 Dec 22;281(51):39573-87.  PubMed, CrossRef
  102. Barwe SP, Kim S, Rajasekaran SA, Bowie JU, Rajasekaran AK. Janus model of the Na,K-ATPase beta-subunit transmembrane domain: distinct faces mediate alpha/beta assembly and beta-beta homo-oligomerization. J Mol Biol. 2007 Jan 19;365(3):706-14.  PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.