Ukr.Biochem.J. 2013; Volume 85, Issue 4, Jul-Aug, pp. 48-60

doi: http://dx.doi.org/10.15407/ubj85.04.048

Influence of Са(2+) on kinetic parameters of pancreatic acinar mitochondria in situ respiration

B. O. Manko, V. V. Manko

Ivan Franko National University of Lviv, Ukraine;
e-mail: mankobo@gmail.com

The dependence of respiration rate of rat permeabilized acinar pancreacytes on oxidative substrates concentration was studied at various [Ca2+] – 10-8–10-6 M. Pancreacytes were permeabilized with 50 µg of digitonin per 1 million cells. Respiration rate was measured polarographically using the Clark electrode at oxidation of succinate or pyruvate either glutamate in the presence of malate. Parameters of Michaelis-Menten equation were calculated by the method of Cornish-Bowden or using Idi-Hofsti coordinates and parameters of Hill equation – using coordinates {v; v/[S]h}. In the studied range of [Ca2+] the kinetic dependence of respiration at pyruvate oxidation is described by the Michaelis-Menten equation, and at oxidation of succinate or glutamate – by Hill equation with h = 1.11–1.43 and 0.50–0.85, respectively. The apparent constant of respiration half-activation (K0.5) did not significantly change in the studied­ range of [Ca2+] while at 10-7 M Ca2+ it was 0.90 ± 0.06 mM for succinate, 0.096 ± 0.007 mM for pyruvate and 0.34 ± 0.03 mM for glutamate. Maximum respiration rate Vmax at pyruvate oxidation increased from 0.077 ± 0.002 to 0.119 ± 0.002 and 0.140 ± 0.002 nmol O2/(s·million cells) due to the increase of [Ca2+] from 10-7 to 5×10-7 or 10-6 M, respectively. At oxidation of succinate or glutamate Ca2+ did not significantly affect Vmax. Thus, the increase of [Ca2+] stimulates respiration of mitochondria in situ of acinar pancreacytes at oxidation of exogenous pyruvate (obviously due to pyruvate dehydrogenase activation), but not at succinate or glutamate oxidation.

Keywords: , , , , , , , , ,


References:

  1. Denton RM, Randle PJ, Martin BR. Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem J. 1972 Jun;128(1):161-3. PubMed, PubMedCentral, CrossRef
  2.  Denton RM, McCormack JG, Edgell NJ. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980 Jul 15;190(1):107-17. PubMed, PubMedCentral, CrossRef
  3. Denton RM, McCormack JG, Rutter GA, Burnett P, Edgell NJ, Moule SK, Diggle TA. The hormonal regulation of pyruvate dehydrogenase complex. Adv Enzyme Regul. 1996;36:183-98. PubMed, CrossRef
  4. McCormack JG, Denton RM. Role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca2+-sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat. Biochem J. 1980 Jul 15;190(1):95-105. PubMed, PubMedCentral, CrossRef
  5. Denton RM, Richards DA, Chin JG. Calcium ions and the regulation of NAD+-linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem J. 1978 Dec 15;176(3):899-906. PubMed, PubMedCentral, CrossRef
  6. McCormack JG, Denton RM. A comparative study of the regulation of Ca2+ of the activities of the 2-oxoglutarate dehydrogenase complex and NAD+-isocitrate dehydrogenase from a variety of sources. Biochem J. 1981 May 15;196(2):619-24. PubMed, PubMedCentral, CrossRef
  7. McCormack JG, Denton RM. The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J. 1979 Jun 15;180(3):533-44. PubMedPubMedCentralCrossRef
  8. Brown GC. Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J. 1992 May 15;284(Pt 1):1-13. Review. PubMed, CrossRef
  9. Robb-Gaspers LD, Burnett P, Rutter GA, Denton RM, Rizzuto R, Thomas AP. Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J. 1998 Sep 1;17(17):4987-5000. PubMed, PubMedCentral, http://dx.doi.org/10.1093/emboj/17.17.4987″]
  10. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci USA. 1999 Nov 23;96(24):13807-12. PubMed, PubMedCentral, CrossRef
  11. Bruce JI, Giovannucci DR, Blinder G, Shuttleworth TJ, Yule DI. Modulation of [Ca2+]i signaling dynamics and metabolism by perinuclear mitochondria in mouse parotid acinar cells. J Biol Chem. 2004 Mar 26;279(13):12909-17. Epub 2003 Dec 29. PubMed, CrossRef
  12.  Chalmers S, McCarron JG. The mitochondrial membrane potential and Ca2+ oscillations in smooth muscle. J Cell Sci. 2008 Jan 1;121(Pt 1):75-85. PubMed, CrossRef
  13. Velykopolska OYu, Manko BO, Manko VV. Endoplasmic-mitochondrial Ca(2+)-functional unit: dependence of respiration of secretory cells on activity of ryanodine- and IP3 – sensitive Ca(2+)-channels. Ukr Biokhim Zhurn. 2012 Sep-Oct;84(5):76-88. Ukrainian. PubMed
  14. Voronina S, Sukhomlin T, Johnson PR, Erdemli G, Petersen OH, Tepikin A. Correlation of NADH and Ca2+ signals in mouse pancreatic acinar cells. J Physiol. 2002 Feb 15;539(Pt 1):41-52. PubMed, PubMedCentral, CrossRef
  15. Bauduin H, Colin M, Dumont JE. Energy sources for protein synthesis and enzymatic secretion in rat pancreas in vitro. Biochim Biophys Acta. 1969 Feb 18;174(2):722-33. PubMed, PubMed
  16. Manko BO, Manko VV. Mechanisms of respiration intensification of rat pancreatic acini upon carbachol-induced Ca(2+) release. Acta Physiol (Oxf). 2013 Aug;208(4):387-99. PubMed, CrossRef
  17. Voronina SG, Barrow SL, Gerasimenko OV, Petersen OH, Tepikin AV. Effects of secretagogues and bile acids on mitochondrial membrane potential of pancreatic acinar cells: comparison of different modes of evaluating DeltaPsim. J Biol Chem. 2004 Jun 25;279(26):27327-38. PubMed, CrossRef
  18. Voronina SG, Barrow SL, Simpson AW, Gerasimenko OV, da Silva Xavier G, Rutter GA, Petersen OH, Tepikin AV. Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells. Gastroenterology. 2010 May;138(5):1976-87. PubMedCrossRef
  19. Manko BO, Klevets MY, Manko VV. An implication of novel methodology to study pancreatic acinar mitochondria under in situ conditions. Cell Biochem Funct. 2013 Mar;31(2):115-21. Epub 2012 Aug 13. PubMedCrossRef
  20. Williams JA, Korc M, Dormer RL. Action of secretagogues on a new preparation of functionally intact, isolated pancreatic acini. Am J Physiol. 1978 Nov;235(5):517-24. PubMed
  21. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409-27. PubMed
  22. Saks VA, Belikova YO, Kuznetsov AV. In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim Biophys Acta. 1991 Jul 8;1074(2):302-11. PubMed, CrossRef
  23.  Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc. 2008;3(6):965-76. PubMed, CrossRef
  24. Merlavsky VM, Manko BO, Ikkert OV, Manko VV. Energy processes in isolated hepatocytes at different duration of insulin action. Studia Biologica. 2010;4(3):15-22.
  25. Carpenter JH. New measurements of oxygen solubility in pure and natural water. Limnol Oceanogr. 1966;11(2):264-277. CrossRef
  26. Eisenthal R, Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715-20. PubMed, PubMedCentral, CrossRef
  27. Eadie GS. The inhibition of cholinesterase by physostogmine and prostigmine. J Biol Chem. 1942;146:85-93.
  28. Hofstee BH. Specificity of esterases. I. Identification of two pancreatic aliesterases. J Biol Chem. 1952 Nov;199(1):357-64. PubMed
  29. Manko VV. Use of hill equation for kinetic analysis of Ca2+-transporting systems of Chironomus plumosus larvae secretory cells. Studia Biologica. 2007;1(1):5-18.
  30. Childs RE, Bardsley WG. An analysis of non-linear Eadie-Hofstee-Scatchard representations of ligand-binding and initial-rate data for allosteric and other complex enzyme mechanisms. J Theor Biol. 1976 Nov;63(1):1-18. PubMed, CrossRef
  31. Neet KE. Cooperativity in enzyme function: equilibrium and kinetic aspects. Methods Enzymol. 1995;249:519-67. Review. PubMed, CrossRef
  32.  Reed LJ, Yeaman SJ. 3 Pyruvate Dehydrogenase. Enzymes. 1987;18:77-95. CrossRef
  33. Minárik P, Tomásková N, Kollárová M, Antalík M. Malate dehydrogenases–structure and function. Gen Physiol Biophys. 2002 Sep;21(3):257-65. Review. PubMed
  34. Messer JI, Jackman MR, Willis WT. Pyruvate and citric acid cycle carbon requirements in isolated skeletal muscle mitochondria. Am J Physiol Cell Physiol. 2004 Mar;286(3):C565-72. Epub 2003 Nov 5. PubMed
  35. Gnaiger E. Steiger Druck GmbH, Axams, Austria, 2007. 97 p.
  36. Rasmussen UF, Rasmussen HN. Human quadriceps muscle mitochondria: a functional characterization. Mol Cell Biochem. 2000 May;208(1-2):37-44. PubMed
  37. Puchowicz MA, Varnes ME, Cohen BH, Friedman NR, Kerr DS, Hoppel CL. Oxidative phosphorylation analysis: assessing the integrated functional activity of human skeletal muscle mitochondria–case studies. Mitochondrion. 2004 Sep;4(5-6):377-85. PubMed, CrossRef
  38. Thorn P, Lawrie AM, Smith PM, Gallacher DV, Petersen OH. Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell. 1993 Aug 27;74(4):661-8. PubMed, CrossRef
  39. Straub SV, Giovannucci DR, Yule DI. Calcium wave propagation in pancreatic acinar cells: functional interaction of inositol 1,4,5-trisphosphate receptors, ryanodine receptors, and mitochondria. J Gen Physiol. 2000 Oct;116(4):547-60. PubMed, PubMedCentral, CrossRef
  40. Cancela JM, Van Coppenolle F, Galione A, Tepikin AV, Petersen OH. Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers. EMBO J. 2002 Mar 1;21(5):909-19. PubMed, PubMedCentral, CrossRef
  41.  Satrústegui J, Pardo B, Del Arco A. Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev. 2007 Jan;87(1):29-67. Review. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.