Ukr.Biochem.J. 2015; Volume 87, Issue 6, Nov-Dec, pp. 19-35

doi: https://doi.org/10.15407/ubj87.06.019

Reprogramming of mitochondrial energy metabolism in malignant neoplasms

A. A. Kaplia1, L. V. Sorokina2, S. V. Khyzhnyak3

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: kaplya@biochem.kiev.ua;
2ESC “Institute of Biology”, Taras Shevchenko National University of Kyiv, Ukraine;
3National University of Life and Environmental Sciences of Ukraine, Kyiv

The novel ideas of fundamental role of mitochondria in the maintenance of viability of malignant cells have been reviewed. The modern state of research is considered in detail, including: mitochondrial control of the cellular redox state, sites of reactive oxygen species (ROS) production in inner mitochondrial membrane and antioxidant protection   systems. Specificities of the structural-functional mitochondrial remodelling in malignant tumors, the mechanisms of the energy metabolism reprogramming, enhancement of the ROS production and adaptation to the hypoxic conditions and metabolic stress are analyzed. The available data including our research on transplanted tumors indicate that cytotoxic action of sodium dichloroacetate (the inhibitor of pyruvate dehydrogenase kinase) depends on biological properties of tumors and intensity of structural-functional mitochondrial rearrangement. Dichloroacetate turned out to be effective for sarcoma 37, but not for Lewis lung carcinoma.

Keywords: , , , , , , ,


References:

  1. Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria in cancer cells: what is so special about them? Trends Cell Biol. 2008 Apr;18(4):165-73. Review. PubMed, CrossRef
  2. Finkel T. Signal transduction by mitochondrial oxidants. J Biol Chem. 2012 Feb 10;287(7):4434-40. Review. PubMed, PubMedCentral, CrossRef
  3. Gaude E, Frezza C. Defects in mitochondrial metabolism and cancer. Cancer Metab. 2014 Jul 17;2:10. eCollection 2014. Review. PubMed, PubMedCentral, CrossRef
  4. Vaupel P, Harrison L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist. 2004;9 Suppl 5:4-9. Review. PubMed, CrossRef
  5.  Osinsky S., Vaupel P. Tumor microphysiology. Kiev: Naukova Dumka, 2009. 254 p. (In Russian).
  6. Michelakis ED, Webster L, Mackey JR. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer. 2008 Oct 7;99(7):989-94. Review. PubMed, PubMedCentral, CrossRef
  7. McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND, Wu H, Schell MJ, Tsang TM, Teahan O, Zhou S, Califano JA, Jeoung NH, Harris RA, Verma A. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem. 2008 Aug 15;283(33):22700-8. PubMed, PubMedCentral, CrossRef
  8. Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc). 2005 Feb;70(2):200-14. Review. PubMed, CrossRef
  9. Jezek P, Hlavatá L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol. 2005 Dec;37(12):2478-503. Review. PubMed, CrossRef
  10. Hamanaka RB, Chandel NS. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci. 2010 Sep;35(9):505-13. PubMed, PubMedCentral, CrossRef
  11. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009 Jan 1;417(1):1-13. Review. PubMed, PubMedCentral, CrossRef
  12. Burlaka AP, Sidorik EP. Radical oxygen and nitric oxide species in neoplastic process. Kiev: Naukova Dumka, 2006. 228 p. (In Ukrainian).
  13. Sazanov LA. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry. 2007 Mar 6;46(9):2275-88. Review. PubMed, CrossRef
  14. Hirst J, King MS, Pryde KR. The production of reactive oxygen species by complex I. Biochem Soc Trans. 2008 Oct;36(Pt 5):976-80. PubMed, CrossRef
  15. Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem. 2002 Mar;80(5):780-7. PubMed, CrossRef
  16. Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci. 2006 Dec;27(12):639-45. Review. PubMed, CrossRef
  17. Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys. 1985 Mar;237(2):408-14. PubMed, CrossRef
  18. Han D, Williams E, Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J. 2001 Jan 15;353(Pt 2):411-6. PubMed, PubMedCentral, CrossRef
  19. Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004 Nov 19;279(47):49064-73. PubMed, CrossRef
  20.  Han D, Antunes F, Canali R, Rettori D, Cadenas E. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem. 2003 Feb 21;278(8):5557-63.  PubMed, CrossRef
  21.  Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci. 2004 Sep 8;24(36):7779-88. PubMed, CrossRef
  22. Eaton S. Control of mitochondrial beta-oxidation flux. Prog Lipid Res. 2002 May;41(3):197-239. Review. PubMed, CrossRef
  23.  Forman HJ, Kennedy J. Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase. Arch Biochem Biophys. 1976 Mar;173(1):219-24. PubMed, CrossRef
  24. Tretter L, Takacs K, Hegedus V, Adam-Vizi V. Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria. J Neurochem. 2007 Feb;100(3):650-63. PubMed, CrossRef
  25. Kunduzova OR, Bianchi P, Parini A, Cambon C. Hydrogen peroxide production by monoamine oxidase during ischemia/reperfusion. Eur J Pharmacol. 2002 Jul 19;448(2-3):225-30. PubMed, CrossRef
  26. Baraboy VA. Bioantioxidants. Kiev: Kniga plyus, 2006. 462 p. (In Russian).
  27. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64(1):97-112. Review. PubMed, CrossRef
  28.  Kulinsky VI, Kolesnichenko LS. Mitochondrial glutathione. Biochemistry (Mosc). 2007 Jul;72(7):698-701. Review. PubMed
  29. Kulinsky VI, Kolesnichenko LS. Glutathione system. II. Other enzymes, thiol-disulphide metabolism, inflammation and immunity, functions. Biomed Khim. 2009 Jul-Aug;55(4):365-79. Russian. PubMed
  30. Raza H. Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease. FEBS J. 2011 Nov;278(22):4243-51.  Review. PubMed, PubMedCentral, CrossRef
  31. Song IS, Kim HK, Jeong SH, Lee SR, Kim N, Rhee BD, Ko KS, Han J. Mitochondrial peroxiredoxin III is a potential target for cancer therapy. Int J Mol Sci. 2011;12(10):7163-85. Review. [pmr id=”22072940″], PubMedCentral, CrossRef
  32. Lillig CH, Berndt C, Holmgren A. Glutaredoxin systems. Biochim Biophys Acta. 2008 Nov;1780(11):1304-17. Review. PubMed, CrossRef
  33. Lyu BN, Lyu MB, Ismailov BS. The role of mitochondria in development and regulation of the oxidation stress level in norm, in cellular pathologies and tumor cells reversion. Uspehi Sovremennoyi Biologii. 2006;126(4):388-398. (In Russian).
  34. Votyakova TV, Reynolds IJ. DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem. 2001 Oct;79(2):266-77. PubMed, CrossRef
  35. Davis S, Weiss MJ, Wong JR, Lampidis TJ, Chen LB. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. J Biol Chem. 1985 Nov 5;260(25):13844-50. PubMed
  36. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED. A mitochondria-K+ channel axis is suppressed in cancer and  its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007 Jan;11(1):37-51. PubMed, CrossRef
  37.  Koshalova I., Popov V. Michondrial proteins-uncouplers. The role in animal kidney and liver mitochondria. Lambert Academic Publishing, 2011. 120 p. (In Russian).
  38. Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer. 2002 Dec 9;1:9. Review. PubMed, PubMedCentral, CrossRef
  39. Chatterjee A, Dasgupta S, Sidransky D. Mitochondrial subversion in cancer. Cancer Prev Res (Phila). 2011 May;4(5):638-54. Review. PubMed, PubMedCentral, CrossRef
  40. Palacios-Callender M, Quintero M, Hollis VS, Springett RJ, Moncada S. Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase.  Proc Natl Acad Sci USA. 2004 May 18;101(20):7630-5. PubMed, PubMedCentral, CrossRef
  41. Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG. The role of nitric oxide in cancer. Cell Res. 2002 Dec;12(5-6):311-20. Review. PubMed
  42. Kaplia AA, Kudriavtseva AG, Kizhniak SV, Osinskiy DS, Demin EN. Na+,K+-ATPase activity characteristics in human colon adenocarcinoma. Ukr Biokhim Zhurn. 2007 Jul-Aug;79(4):90-6. Russian. PubMed
  43. Kaplia AA, Morozova VS. Na+,K(+)-ATPase activity in polarized cells. Ukr Biokhim Zhurn. 2010 Jan-Feb;82(1):5-20. Review. Russian. PubMed
  44. Dada LA, Chandel NS, Ridge KM, Pedemonte C, Bertorello AM, Sznajder JI. Hypoxia-induced endocytosis of Na,K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-zeta. J Clin Invest. 2003 Apr;111(7):1057-64. PubMed, PubMedCentral, CrossRef
  45. Robey RB, Hay N. Is Akt the “Warburg kinase”?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol. 2009 Feb;19(1):25-31. Review. PubMed, PubMedCentral, CrossRef
  46. Hedrick SM. The cunning little vixen: Foxo and the cycle of life and death. Nat Immunol. 2009 Oct;10(10):1057-63. Review. PubMed, PubMedCentral, CrossRef
  47. He X, Nie H, Hong Y, Sheng C, Xia W, Ying W. SIRT2 activity is required for the survival of C6 glioma cells. Biochem Biophys Res Commun. 2012 Jan 6;417(1):468-72. PubMed, CrossRef
  48. Meng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell. 2002 Feb;9(2):387-99. PubMed, CrossRef
  49. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005 Mar 11;120(5):649-61. PubMed, CrossRef
  50. Imanishi H, Hattori K, Wada R, Ishikawa K, Fukuda S, Takenaga K, Nakada K, Hayashi J. Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS One. 2011;6(8):e23401. PubMed, PubMedCentral, CrossRef
  51. Chatterjee A, Dasgupta S, Sidransky D. Mitochondrial subversion in cancer. Cancer Prev Res (Phila). 2011 May;4(5):638-54. Review. PubMed, PubMedCentral, CrossRef
  52. Vaupel P. Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist. 2008;13 Suppl 3:21-6. Review. PubMed, CrossRef
  53. Lozy F, Karantza V. Autophagy and cancer cell metabolism. Semin Cell Dev Biol. 2012 Jun;23(4):395-401. Review. PubMed, PubMedCentral, CrossRef
  54. Chen Y, Cairns R, Papandreou I, Koong A, Denko NC. Oxygen consumption can regulate the growth of tumors, a new perspective on the Warburg effect. PLoS One. 2009 Sep 15;4(9):e7033. PubMed, PubMedCentral, CrossRef
  55. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 1996 Jan 4;379(6560):88-91. PubMed, CrossRef
  56. Giaccia A.J., Koumenis C., Denko N. The influence of tumor hypoxia on malignant progression. In: Tumor Hypoxia: pathophysiology, clinical significance and therapeutic perspectives. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1999. P. 115-124.
  57. Warburg O. On respiratory impairment in cancer cells. Science. 1956 Aug 10;124(3215):269-70. PubMed, CrossRef
  58. Capuano F, Varone D, D’Eri N, Russo E, Tommasi S, Montemurro S, Prete F, Papa S. Oxidative phosphorylation and F(O)F(1) ATP synthase activity of human hepatocellular carcinoma. Biochem Mol Biol Int. 1996 Apr;38(5):1013-22. PubMed
  59. Kroemer G. Mitochondria in cancer. Oncogene. 2006 Aug 7;25(34):4630-2. PubMed, CrossRef
  60. Höckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001 Feb 21;93(4):266-76. Review.  PubMed, CrossRef
  61.  Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006 Aug 7;25(34):4633-46. Review. PubMed, CrossRef
  62. Gatenby RA, Gawlinski ET. The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res. 2003 Jul 15;63(14):3847-54. PubMed
  63. Weinhouse S. The Warburg hypothesis fifty years later. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1976;87(2):115-26. PubMed, CrossRef
  64. Bayley JP, Devilee P. The Warburg effect in 2012. Curr Opin Oncol. 2012 Jan;24(1):62-7. Review. PubMed, CrossRef
  65. Simonnet H, Alazard N, Pfeiffer K, Gallou C, Béroud C, Demont J, Bouvier R, Schägger H, Godinot C. Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis. 2002 May;23(5):759-68. PubMed, CrossRef
  66. Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res. 2006 May 15;66(10):5216-23. PubMed, CrossRef
  67. Fang JS, Gillies RD, Gatenby RA. Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol. 2008 Oct;18(5):330-7. Review. PubMed, PubMedCentral, CrossRef
  68. Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009 Mar 6;136(5):823-37. Erratum in: Cell. 2009 Aug 21;138(4):807. PubMed, PubMedCentral, CrossRef
  69. Chen Z, Lu W, Garcia-Prieto C, Huang P. The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr. 2007 Jun;39(3):267-74. Review. PubMed, CrossRef
  70. Cairns RA, Papandreou I, Sutphin PD, Denko NC. Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc Natl Acad Sci USA. 2007 May 29;104(22):9445-50.  PubMed, PubMedCentral, CrossRef
  71. Kennedy KM, Dewhirst MW. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 2010 Jan;6(1):127-48. Review. PubMed, PubMedCentral, CrossRef
  72. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004 Nov;4(11):891-9. Review. PubMed, CrossRef
  73. Walenta S, Mueller-Klieser WF. Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol. 2004 Jul;14(3):267-74. Review. PubMed, CrossRef
  74.  Koukourakis MI, Giatromanolaki A, Simopoulos C, Polychronidis A, Sivridis E. Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clin Exp Metastasis. 2005;22(1):25-30. PubMed, CrossRef
  75. Cuezva JM, Ostronoff LK, Ricart J, López de Heredia M, Di Liegro CM, Izquierdo JM. Mitochondrial biogenesis in the liver during development and oncogenesis. J Bioenerg Biomembr. 1997 Aug;29(4):365-77. PubMed
  76. Baggetto LG, Testa-Parussini R. Role of acetoin on the regulation of intermediate metabolism of Ehrlich ascites tumor mitochondria: its contribution to membrane cholesterol enrichment modifying passive proton permeability. Arch Biochem Biophys. 1990 Dec;283(2):241-8. PubMed, CrossRef
  77. Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997 Feb;17(1):3-8. Review. PubMed
  78. Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer. 2002 Dec 9;1:9. Review. PubMed, PubMedCentral, CrossRef
  79. Kim JW, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 2006 Sep 15;66(18):8927-30. Review. PubMed, CrossRef
  80. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, Thompson CB. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 2008 Dec 2;105(48):18782-7. PubMed, PubMedCentral, CrossRef
  81. Unwin RD, Craven RA, Harnden P, Hanrahan S, Totty N, Knowles M, Eardley I, Selby PJ, Banks RE. Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics. 2003 Aug;3(8):1620-32. PubMed, CrossRef
  82. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM. p53 Regulates mitochondrial respiration. Science. 2006 Jun 16;312(5780):1650-3. PubMed, CrossRef
  83. Assaily W, Benchimol S. Differential utilization of two ATP-generating pathways is regulated by p53. Cancer Cell. 2006 Jul;10(1):4-6. PubMed, CrossRef
  84. Mayer A, Höckel M, Vaupel P. Endogenous hypoxia markers in locally advanced cancers of the uterine cervix: reality or wishful thinking? Strahlenther Onkol. 2006 Sep;182(9):501-10. Review. PubMed, CrossRef
  85.  Brahimi-Horn MC, Chiche J, Pouysségur J. Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol. 2007 Apr;19(2):223-9. Review. PubMed, CrossRef
  86. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007 Jun;26(2):225-39. Review. PubMed, CrossRef
  87. Weidemann A, Johnson RS. Biology of HIF-1alpha. Cell Death Differ. 2008 Apr;15(4):621-7. Review. PubMed, CrossRef
  88. Kim JW, Gao P, Dang CV. Effects of hypoxia on tumor metabolism. Cancer Metastasis Rev. 2007 Jun;26(2):291-8. Review. PubMed, CrossRef
  89.  Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999 May 20;399(6733):271-5. PubMed
  90. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998 Jan 15;12(2):149-62. PubMed, PubMedCentral, CrossRef
  91. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006 Mar;3(3):177-85. PubMed, CrossRef
  92.  Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006 Mar;3(3):187-97. PubMed, CrossRef
  93. Firth JD, Ebert BL, Ratcliffe PJ. Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem. 1995 Sep 8;270(36):21021-7. PubMed, CrossRef
  94. Roche TE, Hiromasa Y. Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci. 2007 Apr;64(7-8):830-49. Review. PubMed, CrossRef
  95. Baggetto LG, Lehninger AL. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes. Biochem Biophys Res Commun. 1987 May 29;145(1):153-9. PubMed, CrossRef
  96. Bustamante E, Pedersen PL. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA. 1977 Sep;74(9):3735-9. PubMed, PubMedCentral, CrossRef
  97. Bustamante E, Morris HP, Pedersen PL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem. 1981 Aug 25;256(16):8699-704. PubMed
  98. Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell. 2004 Dec 3;16(5):819-30. PubMed, CrossRef
  99. Mathupala SP, Ko YH, Pedersen PL. Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene. 2006 Aug 7;25(34):4777-86. Review. PubMed, PubMedCentral, CrossRef
  100. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007 Apr 6;129(1):111-22. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.