Ukr.Biochem.J. 2016; Volume 88, Issue 4, Jul-Aug, pp. 20-28


The influence of heavy metal ions, spermine and sodium nitroprusside on ATP-hydrolases of cell membranes of rat colon smooth muscle

A. A. Kaplia

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;

The specific features of functional lability of the rat colon smooth muscle (CSM) АТР-hydrolases were studied. Na+,K+-AТРase activity is effectively inhibited by divalent ions of both transition (≥ 0,1 µM) and nontransition (≥ 1 µM) heavy metals in succession by efficiency: Cu2+ > Fe2+ ≥ Cd2+ (10 µM). Polyamine spermine (0,5-1,0 mM) is a weak  Na+,K+-AТРase inhibitor at saturation concentrations of ions and substrate. Sodium nitroprusside (1 mM) as nitric oxide-generating compound exhibits weak Na+,K+-AТРase inhibition only after prolonged preincubation with membranes. Mg2+-АТР-hydrolase activity in all cases is much more resistant to studied agents. Considering the example of the CSM Na+,K+-AТРase it is assumed that  enzyme has specific biochemical features that contribute to its role as a potential target and redox-sensor, mediating the pathological mechanisms of heavy metal intoxication and cell oxidative damage.

Keywords: , , , , ,


  1. Glitsch HG. Electrophysiology of the sodium-potassium-ATPase in cardiac cells. Physiol Rev. 2001 Oct;81(4):1791-826. Review. PubMed
  2. Kosterin S.A. Calcium transport in smooth muscle. Kiev: Naukova Dumka,1990. 216p. (In Russian).
  3. Ishida Y, Paul RJ. Ca2+ clearance in smooth muscle: lessons from gene-altered mice. J Smooth Muscle Res. 2005 Oct;41(5):235-45. Review. PubMed, CrossRef
  4. Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol. 2004 Jun;164(6):1875-82. Review. PubMed, PubMedCentral, CrossRef
  5. Hamanaka RB, Chandel NS. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci. 2010 Sep;35(9):505-13.
    PubMed, PubMedCentral, CrossRef
  6. Kaplia AA, Sorokina LV, Khyzhnyak SV. Reprogramming of mitochondrial energy metabolism in malignant neoplasms. Ukr Biochem J. 2015 Nov-Dec;87(6):19-35. Review. (In Russian). PubMed, CrossRef
  7. Figtree GA, Liu CC, Bibert S, Hamilton EJ, Garcia A, White CN, Chia KK, Cornelius F, Geering K, Rasmussen HH. Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation. Circ Res. 2009 Jul 17;105(2):185-93. PubMed, CrossRef
  8. Baraboy VA. Bioantioxidants. Kiev: Kniga plyus, 2006. 462 p. (In Russian).
  9. Britton RS, Leicester KL, Bacon BR. Iron toxicity and chelation therapy. Int J Hematol. 2002 Oct;76(3):219-28. Review. PubMed, CrossRef
  10. Brissot P, Ropert M, Le Lan C, Loréal O. Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim Biophys Acta. 2012 Mar;1820(3):403-10. Review. PubMed, CrossRef
  11. Vasic VM, Colovic MB, Krstić DZ. Mechanism of Na+,K+-ATPase and Mg2+-ATPase inhibition by metal ions and complexes. Hem Ind. 2009;63(5a): 499-509.
  12. Khyzhnyak SV. Cellular mechanisms of cadmium toxicity. Kyiv: Lat&K, 2010. 213 p. (In Ukrainian).
  13. Kaplia AA. The heterogeneity of the Na+, K+-ATPase ouabain sensitivity in microsomal membranes of rat colon smooth muscles. Ukr Biokhim Zhurn. 2011 Sep-Oct;83(5):89-93. (In Russian). PubMed
  14. Kaplia AA. The influence of iron ions on ATP-hydrolases activity of cell membranes of rat colon smooth muscle and kidney. Ukr Biochem J. 2015 Jan-Feb;87(1):83-90. (In Ukrainian). PubMed, CrossRef
  15. Chen PS, Toribara TY, Warner H. Microdetermination of phosphorus. Anal Chem. 1956 Nov;28(11):1756-1758. CrossRef
  16. Kaplia AA. Structural organization and functional role of Na+,K+-ATР-ase isozymes. Kiev: Kiev University Press, 1998. 162 p. (In Russian).
  17. Goldshleger R, Bar Shimon M, Or E, Karlish SJ. Metal-catalysed cleavage of Na,K-ATPase as a tool for study of structure-function relations. Acta Physiol Scand Suppl. 1998 Aug;643:89-97. Review. PubMed
  18. Shimon MB, Goldshleger R, Karlish SJ. Specific Cu2+-catalyzed oxidative cleavage of Na,K-ATPase at the extracellular surface. J Biol Chem. 1998 Dec 18;273(51):34190-5. PubMed, CrossRef
  19. Goldshleger R, Patchornik G, Shimon MB, Tal DM, Post RL, Karlish SJ. Structural organization and energy transduction mechanism of Na+,K+-ATPase studied with transition metal-catalyzed oxidative cleavage. J Bioenerg Biomembr. 2001 Oct;33(5):387-99. Review. PubMed, CrossRef
  20. Patchornik G, Munson K, Goldshleger R, Shainskaya A, Sachs G, Karlish SJ. The ATP-Mg2+ binding site and cytoplasmic domain interactions of Na+,K+-ATPase investigated with Fe2+-catalyzed oxidative cleavage and molecular modeling. Biochemistry. 2002 Oct 1;41(39):11740-9. PubMed, CrossRef
  21. Krstić D, Krinulović K, Vasić V. Inhibition of Na+/K(+)-ATPase and Mg(2+)-ATPase by metal ions and prevention and recovery of inhibited activities by chelators. J Enzyme Inhib Med Chem. 2005 Oct;20(5):469-76. PubMed, CrossRef
  22. Tashima Y, Hasegawa M, Lane LK, Schwartz A. Specific effects of spermine on Na+,K+-adenosine triphosphatase. J Biochem. 1981 Jan;89(1):249-55. PubMed
  23. Garçon DP, Lucena MN, França JL, McNamara JC, Fontes CF, Leone FA. Na⁺,K⁺-ATPase activity in the posterior gills of the blue crab, Callinectes ornatus (Decapoda, Brachyura): modulation of ATP hydrolysis by the biogenic amines spermidine and spermine. J Membr Biol. 2011 Nov;244(1):9-20. PubMed, CrossRef
  24. Sato T, Kamata Y, Irifune M, Nishikawa T. Inhibitory effect of several nitric oxide-generating compounds on purified Na+,K(+)-ATPase activity from porcine cerebral cortex. J Neurochem. 1997 Mar;68(3):1312-8. PubMed, CrossRef
  25. Mishchuk DO, Zimina VP, Kaplia AA. Ethanol sensitivity of rat brain cortex Na(+), K(+)-ATPase in plasma membrane structural damage induced by sodium dodecyl sulfate. Ukr Biokhim Zhurn. 2002 Sep-Oct;74(5):55-61. (In Russian). PubMed
  26. Mishchuk DO, Kaplia AA. Effect of ethanol on structural and functional characteristics of rat brain cortical membranes in vitro. Ukr Biokhim Zhurn. 2003 Mar-Apr;75(2):55-61. (In Russian). PubMed
  27. Kaplia AA, Mishchuk DO. Na+,K+-ATPase isoenzymes of excitable tissues in pathological states. Ukr Biokhim Zhurn. 2001 Sep-Oct;73(5):17-22. Review. (In Russian). PubMed
  28. Kaplia AA, Morozova VS. Na+,K(+)-ATPase activity in polarized cells. Ukr Biokhim Zhurn. 2010 Jan-Feb;82(1):5-20. Review. (In Russian). PubMed
  29. Dada LA, Chandel NS, Ridge KM, Pedemonte C, Bertorello AM, Sznajder JI. Hypoxia-induced endocytosis of Na,K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-zeta. J Clin Invest. 2003 Apr;111(7):1057-64. PubMed, PubMedCentral, CrossRef
  30. Liu CC, Karimi Galougahi K, Weisbrod RM, Hansen T, Ravaie R, Nunez A, Liu YB, Fry N, Garcia A, Hamilton EJ, Sweadner KJ, Cohen RA, Figtree GA. Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent β1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction. Free Radic Biol Med. 2013 Dec;65:563-72.  PubMed, PubMedCentral, CrossRef
  31. Kaplia AA, Khizhniak SV, Kudriavtseva AG, Papageorgakopulu N, Osinskiĭ DS. Na+,K+-ATPase and Ca2+-ATPase isozymes in malignant neoplasms. Ukr Biokhim Zhurn. 2006 Jan-Feb;78(1):29-42. Review. (In Russian). PubMed
  32. Akimova OA, Tverskoi AM, Smolyaninova LV, Mongin AA, Lopina OD, La J, Dulin NO, Orlov SN. Critical role of the α1-Na(+), K(+)-ATPase subunit in insensitivity of rodent cells to cytotoxic action of ouabain. Apoptosis. 2015 Sep;20(9):1200-10. PubMed, PubMedCentral, CrossRef
  33. Liu Y, Shoji-Kawata S, Sumpter RM Jr, Wei Y, Ginet V, Zhang L, Posner B, Tran KA, Green DR, Xavier RJ, Shaw SY, Clarke PG, Puyal J, Levine B. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci USA. 2013 Dec 17;110(51):20364-71.  PubMed, PubMedCentral, CrossRef
  34. McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res. 2004 Oct 15;95(8):830-40. PubMed, CrossRef
  35. Michelakis ED, Hampl V, Nsair A, Wu X, Harry G, Haromy A, Gurtu R, Archer SL. Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res. 2002 Jun 28;90(12):1307-15. PubMed, CrossRef
  36. Sorokina LV, Pyatchanina TV, Didenko GV, Kaplia AA, Khyzhnyak SV. The influence of sodium dichloroacetate on the oxidative processes in sarcoma 37. Exp Oncol. 2011 Dec;33(4):216-21. PubMed
  37. Khyzhnyak SV, Sorokina LV, Stepanova LI, Kaplia AA. Functional and dynamic state of inner mitochondrial membrane of sarcoma 37 in mice under administration of sodium dichloroacetate. Ukr Biochem J. 2014 Nov-Dec;86(6):106-18. PubMed, CrossRef
  38. McCarty MF, Contreras F. Increasing Superoxide Production and the Labile Iron Pool in Tumor Cells may Sensitize Them to Extracellular Ascorbate. Front Oncol. 2014 Sep 16;4:249.  PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.