Ukr.Biochem.J. 2016; Volume 88, Issue 5, Sep-Oct, pp. 71-81

doi: https://doi.org/10.15407/ubj88.05.071

Mutation of katG in a clinical isolate of Mycobacterium tuberculosis: effects on catalase-peroxidase for isoniazid activation

Purkan1, Ihsanawati2, D. Natalia2, Y. M. Syah2,
D. S. Retnoningrum3, H. S. Kusuma4

1Biochemistry Research Division, Department of Chemistry,
Faculty of Sciences and Technology, Airlangga University; Surabaya, Indonesia;
e-mail: purkan@fst.unair.ac.id;
2Biochemistry Research Division, Faculty of Mathematics and Natural Sciences,
Bandung Institute of Technology, Bandung, Indonesia;
3School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia;
4Department of Chemical Engineering, Institut Teknologi
Sepuluh Nopember, Surabaya, Indonesia;
e-mail: heriseptyakusuma@gmail.com

Mutations in katG gene are often associated with isoniazid (INH) resistance in Mycobacterium tuberculosis strain. This research was perfomed to identify the katG mutation in clinical isolate (L8) that is resistant to INH at 1 μg/ml. In addition to characterize the catalase-peroxidase of KatG L8 and perform the ab initio structural study of the protein to get a more complete understanding in drug activation and the resistan­ce mechanism. The katG gene was cloned and expressed in Escherichia coli, then followed by characterization of catalase-peroxidase of KatG. The structure modelling was performed to know a basis of alterations in enzyme activity. A substitution of A713G that correspond to Asn238Ser replacement was found in the L8 katG. The Asn238Ser modification leads to a decline in the activity of catalase-peroxidase and INH oxidation of the L8 KatG protein. The catalytic efficiency (Kcat/KM) of mutant KatGAsn238Ser respectively decreases to 41 and 52% for catalase and peroxidase. The mutant KatGAsn238Ser also shows a decrease of 62% in INH oxidation if compared to a wild type KatG (KatGwt). The mutant Asn238Ser might cause instability in the substrate binding­ site of KatG, because of removal of a salt bridge connecting the amine group of Asn238 to the carbo­xyl group of Glu233, which presents in KatGwt. The lost of the salt bridge in the substrate binding site in mutant KatGAsn238Ser created changes unfavorable for enzyme activities, which in turn emerge as INH resistan­ce in the L8 isolate of M. tuberculosis.

Keywords: , , ,


References:

  1. Anonymous. Tuberculosis. https://www.expat.or.id/medical/tuberculosis. Retrieved 2014-11-25.
  2. Purkan, Ma’ruf MJA, Retnowati W, Baktir A, Puspaningsih NNT. Mutation in pncA and distortion in PZase model structure as a basis of pyrazinamide resistance in Mycobacterium tuberculosis. J Chem Pharm Res. 2015; 7(1): 312-318.
  3. Cardoso RF, Cooksey RC, Morlock GP, Barco P, Cecon L, Forestiero F, Leite CQ, Sato DN, Shikama Mde L, Mamizuka EM, Hirata RD, Hirata MH. Screening and characterization of mutations in isoniazid-resistant Mycobacterium tuberculosis isolates obtained in Brazil. Antimicrob Agents Chemother. 2004 Sep;48(9):3373-81. PubMed, PubMedCentral, CrossRef
  4. Pretorius GS, van Helden PD, Sirgel F, Eisenach KD, Victor TC. Mutations in katG gene sequences in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis are rare. Antimicrob Agents Chemother. 1995 Oct;39(10):2276-81. PubMed, PubMedCentral, CrossRef
  5. Purkan, Ihsanawati, Syah Y, Retnoningrum D, Noer A, Shigeoka S, Natalia D.  Novel mutations in katG gene of a clinical isolate of isoniazid-resistant Mycobacterium tuberculosis.  Biologia. 2012; 67(1): 41-7.  CrossRef
  6. Zhang Y, Dhandayuthapani S, Deretic V. Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. Proc Natl Acad Sci USA. 1996 Nov 12;93(23):13212-6. PubMed, PubMedCentral, CrossRef
  7. Heym B, Saint-Joanis B, Cole ST. The molecular basis of isoniazid resistance in Mycobacterium tuberculosis. Tuber Lung Dis. 1999;79(4):267-71. PubMed, CrossRef
  8. Rouse DA, DeVito JA, Li Z, Byer H, Morris SL. Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: effects on catalase-peroxidase activities and isoniazid resistance. Mol Microbiol. 1996 Nov;22(3):583-92. PubMed, CrossRef
  9. Atalay F, Akar N,  Ernam Turgut D, Aysev D, Ergün P, Erdoğan Y. Catalase-Peroxidase Gene (KatG) Deletion in Isoniazid Resistant Strains of Mycobacterium tuberculosis. T Klin J Med Sci. 2004; 24(3): 243-6.
  10. Yu S, Chouchane S, Magliozzo RS. Characterization of the W321F mutant of Mycobacterium tuberculosis catalase-peroxidase KatG. Protein Sci. 2002 Jan;11(1):58-64. PubMed, PubMedCentral, CrossRef
  11. Ghiladi RA, Medzihradszky KF, Rusnak FM, Ortiz de Montellano PR. Correlation between isoniazid resistance and superoxide reactivity in mycobacterium tuberculosis KatG. J Am Chem Soc. 2005 Sep 28;127(38):13428-42. PubMed, CrossRef
  12. Cade CE, Dlouhy AC, Medzihradszky KF, Salas-Castillo SP, Ghiladi RA. Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: catalase, peroxidase, and INH-NADH adduct formation activities. Protein Sci. 2010 Mar;19(3):458-74.  PubMed, PubMedCentral, CrossRef
  13. Wengenack NL, Lane BD, Hill PJ, Uhl JR, Lukat-Rodgers GS, Hall L, Roberts GD, Cockerill FR 3rd, Brennan PJ, Rodgers KR, Belisle JT, Rusnak F. Purification and characterization of Mycobacterium tuberculosis KatG, KatG(S315T), and Mycobacterium bovis KatG(R463L). Protein Expr Purif. 2004 Aug;36(2):232-43. PubMed, CrossRef
  14. Kapetanaki SM, Zhao X, Yu S, Magliozzo RS, Schelvis JP. Modification of the active site of Mycobacterium tuberculosis KatG after disruption of the Met-Tyr-Trp cross-linked adduct. J Inorg Biochem. 2007 Mar;101(3):422-33. PubMed, PubMedCentral, CrossRef
  15. Noviana H, Nurachman Z, Ramdani M, Noer AS. Multiplex PCR for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis isolated from Bandung, Indonesia.  Microbiology (Indonesia). 2007 Dec; 1(3): 114–118.  CrossRef
  16. Sambrook JF, Maniatis, T. (1989): Molecular Cloning Laboratory Manual. 2nd ed. USA: Cold Spring Harbour Laboratory Press; 1989.
  17. Patti F, Bonet-Maury P. Colorimetric method for determination of catalase. Bull Soc Chim Biol (Paris). 1953;35(10):1177-80. PubMed
  18. Shoeb HA, Bowman BU Jr, Ottolenghi AC, Merola AJ. Evidence for the generation of active oxygen by isoniazid treatment of extracts of Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother. 1985 Mar;27(3):404-7. PubMed, PubMedCentral, CrossRef
  19. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, et al. AMBER 9. San Fancisco: University of California; 2006.
  20. Johnsson K, Froland WA, Schultz PG. Overexpression, purification, and characterization of the catalase-peroxidase KatG from Mycobacterium tuberculosis. J Biol Chem. 1997 Jan 31;272(5):2834-40. PubMed, CrossRef
  21. Rahimi MK, Bostanabad ZS, Adimi P, Shekarabei M, Habibollah M, Shirmohammadi F, Bigdeli Kh, Faraji A, Delalat B, Tayebi Z, Masoumi M, Jabbarzadeh E, Pourazar Sh, Titov LP. Multiple-mutations in the katG encoding catalase proxidase in isoniazid resistant Mycobacterium tuberculosis isolates correlate with high-level of resistance in patients with active pulmonary tuberculosis in Iran. J Microbiol Antimicrob. 2009; 1(1):1-8.
  22. Ando H, Kondo Y, Suetake T, Toyota E, Kato S, Mori T, Kirikae T. Identification of katG mutations associated with high-level isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2010 May;54(5):1793-9. PubMed, PubMedCentral, CrossRef
  23. Wei CJ, Lei B, Musser JM, Tu SC. Isoniazid activation defects in recombinant Mycobacterium tuberculosis catalase-peroxidase (KatG) mutants evident in InhA inhibitor production. Antimicrob Agents Chemother. 2003 Feb;47(2):670-5. PubMed, PubMedCentral, CrossRef
  24. Bertrand T, Eady NA, Jones JN, Jesmin, Nagy JM, Jamart-Grégoire B, Raven EL, Brown KA. Crystal structure of Mycobacterium tuberculosis catalase-peroxidase. J Biol Chem. 2004 Sep 10;279(37):38991-9. PubMed, CrossRef
  25. Pierattelli R, Banci L, Eady NA, Bodiguel J, Jones JN, Moody PC, Raven EL, Jamart-Grégoire B, Brown KA. Enzyme-catalyzed mechanism of isoniazid activation in class I and class III peroxidases. J Biol Chem. 2004 Sep 10;279(37):39000-9. PubMed, CrossRef
  26. Smulevich G, Jakopitsch C, Droghetti E, Obinger C. Probing the structure and bifunctionality of catalase-peroxidase (KatG). J Inorg Biochem. 2006 Apr;100(4):568-85. PubMed, CrossRef
  27. Zhao X, Yu H, Yu S, Wang F, Sacchettini JC, Magliozzo RS. Hydrogen peroxide-mediated isoniazid activation catalyzed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant. Biochemistry. 2006 Apr 4;45(13):4131-40. PubMed, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.