Ukr.Biochem.J. 2017; Volume 89, Issue 2, Mar-Apr, pp. 31-42

doi: https://doi.org/10.15407/ubj89.02.031

Effect of chromium disilicide and titanium nitride nanoparticles on the expression of NAMPT, E2F8, FAS, TBX3, IL13RA2, and UPS7 genes in mouse liver

O. H. Minchenko1, O. P. Yavorovsky2, N. V. Solokha2,
D. O. Minchenko1,2, A. Y. Kuznetsova1

1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: ominchenko@yahoo.com;
2Bohomolets National Medical University, Kyiv, Ukraine

We have studied the effect of chromium disilicide and titanium nitride nanoparticles on the expression level of genes encoding important regulatory enzymes and factors (NAMPT, UPS7, E2F8, FAS/TNFSF6, TBX3, and IL13RA2) in mouse liver for evaluation of possible toxic effects of these nanoparticles. It was shown that treatment of mice by titanium nitride nanoparticles (20 nm; 20 mg with food every working day for 2 months) led to up-regulation of the expression of NAMPT, FAS, TBX3, and IL13RA2 genes and to down-regulation of USP7 and E2F8 genes in the liver tissue. Changes for TBX3 and IL13RA2 genes were more significant than for other genes. Furthermore, treatment of mice by chromium disilicide nanoparticles (45 nm; 20 mg with food every working day for 2 months) led to more significant changes in the expression of USP7, E2F8, FAS, and TBX3 genes in comparison to the effect of titanium nitride nanoparticles. At the same time, effect of titanium nitride nanoparticles on the expression of NAMPT gene in the liver tissue was stronger as compared to chromium disilicide nanoparticles. Additionally, treatment of mice by chromium disilicide nanoparticles did not change significantly the expression of IL13RA2 gene in the liver. The present study demonstrates that chromium disilicide and titanium nitride nanoparticles had variable effects on the expression of most studied genes in a gene specific manner, which possibly reflect genotoxic activities of studied nanoparticles, but molecular mechanisms of observed changes in gene expressions warrant further investigation.

Keywords: , , , , , , , , ,


References:

  1. Rollerova E, Tulinska J, Liskova A, Kuricova M, Kovriznych J, Mlynarcikova A, Kiss A, Scsukova S. Titanium dioxide nanoparticles: some aspects of toxicity/focus on the development. Endocr Regul. 2015 Apr;49(2):97-112. Review. PubMed, CrossRef
  2. Ze Y, Hu R, Wang X, Sang X, Ze X, Li B, Su J, Wang Y, Guan N, Zhao X, Gui S, Zhu L, Cheng Z, Cheng J, Sheng L, Sun Q, Wang L, Hong F. Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium dioxide nanoparticles. J Biomed Mater Res A. 2014 Feb;102(2):470-8. PubMed, CrossRef
  3. Yang J, Luo M, Tan Z, Dai M, Xie M, Lin J, Hua H, Ma Q, Zhao J, Liu A. Oral administration of nano-titanium dioxide particle disrupts hepatic metabolic functions in a mouse model. Environ Toxicol Pharmacol. 2017 Jan;49:112-118. PubMed, CrossRef
  4. van Hove RP, Sierevelt IN, van Royen BJ, Nolte PA. Titanium-Nitride Coating of Orthopaedic Implants: A Review of the Literature. Biomed Res Int. 2015;2015:485975. Review. PubMed, PubMedCentral, CrossRef
  5. Karjalainen PP, Nammas W. Titanium-nitride-oxide-coated coronary stents: insights from the available evidence. Ann Med. 2016 Nov 12:1-11. PubMed, CrossRef
  6. Ritz U, Nusselt T, Sewing A, Ziebart T, Kaufmann K, Baranowski A, Rommens PM, Hofmann A. The effect of different collagen modifications for titanium and titanium nitrite surfaces on functions of gingival fibroblasts. Clin Oral Investig. 2017 Jan;21(1):255-265. PubMed, CrossRef
  7. Chu JP, Yu CC, Tanatsugu Y, Yasuzawa M, Shen YL. Non-stick syringe needles: Beneficial effects of thin film metallic glass coating. Sci Rep. 2016 Aug 30;6:31847. PubMed, PubMedCentral, CrossRef
  8. Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004 Dec 3;279(49):50754-63. PubMed, CrossRef
  9. Shackelford RE, Mayhall K, Maxwell NM, Kandil E, Coppola D. Nicotinamide phosphoribosyltransferase in malignancy: a review. Genes Cancer. 2013 Nov;4(11-12):447-56. Review. PubMed, PubMedCentral, CrossRef
  10. Benito-Martin A, Ucero AC, Izquierdo MC, Santamaria B, Picatoste B, Carrasco S, Lorenzo O, Ruiz-Ortega M, Egido J, Ortiz A. Endogenous NAMPT dampens chemokine expression and apoptotic responses in stressed tubular cells. Biochim Biophys Acta. 2014 Feb;1842(2):293-303.  PubMed, CrossRef
  11. Li HJ, Che XM, Zhao W, He SC, Zhang ZL, Chen R, Fan L, Jia ZL. Diet-induced obesity promotes murine gastric cancer growth through a nampt/sirt1/c-myc positive feedback loop. Oncol Rep. 2013 Nov;30(5):2153-60. PubMed, CrossRef
  12. Zhou Y, Xu JC, Jia YF, Xu CS. Role of death receptors in the regulation of hepatocyte proliferation and apoptosis during rat liver regeneration. Genet Mol Res. 2015 Oct 30;14(4):14066-75. PubMed, CrossRef
  13. Zhang H, Wei T, Jiang X, Li Z, Cui H, Pan J, Zhuang W, Sun T, Liu Z, Zhang Z, Dong H. PEDF and 34-mer inhibit angiogenesis in the heart by inducing tip cells apoptosis via up-regulating PPAR-γ to increase surface FasL. Apoptosis. 2016 Jan;21(1):60-8. PubMed, CrossRef
  14. Yang G, Zhou Z, Cen Y, Gui X, Zeng Q, Ao Y, Li Q, Wang S, Li J, Zhang A. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water. Drug Des Devel Ther. 2015 Aug 18;9:4719-33. PubMed, PubMedCentral, CrossRef
  15. Barderas R, Bartolomé RA, Fernandez-Aceñero MJ, Torres S, Casal JI. High expression of IL-13 receptor α2 in colorectal cancer is associated with invasion, liver metastasis, and poor prognosis. Cancer Res. 2012 Jun 1;72(11):2780-90.  PubMed, CrossRef
  16. Ma B, Herzog EL, Lee CG, Peng X, Lee CM, Chen X, Rockwell S, Koo JS, Kluger H, Herbst RS, Sznol M, Elias JA. Role of chitinase 3-like-1 and semaphorin 7a in pulmonary melanoma metastasis. Cancer Res. 2015 Feb 1;75(3):487-96. PubMed, PubMedCentral, CrossRef
  17. Taguchi A, Taylor AD, Rodriguez J, Celiktaş M, Liu H, Ma X, Zhang Q, Wong CH, Chin A, Girard L, Behrens C, Lam WL, Lam S, Minna JD, Wistuba II, Gazdar AF, Hanash SM. A search for novel cancer/testis antigens in lung cancer identifies VCX/Y genes, expanding the repertoire of potential immunotherapeutic targets. Cancer Res. 2014 Sep 1;74(17):4694-705. PubMed, PubMedCentral, CrossRef
  18. Zaman MM, Nomura T, Takagi T, Okamura T, Jin W, Shinagawa T, Tanaka Y, Ishii S. Ubiquitination-deubiquitination by the TRIM27-USP7 complex regulates tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol. 2013 Dec;33(24):4971-84. PubMed, PubMedCentral, CrossRef
  19. Lee KW, Cho JG, Kim CM, Kang AY, Kim M, Ahn BY, Chung SS, Lim KH, Baek KH, Sung JH, Park KS, Park SG. Herpesvirus-associated ubiquitin-specific protease (HAUSP) modulates peroxisome proliferator-activated receptor γ (PPARγ) stability through its deubiquitinating activity. J Biol Chem. 2013 Nov 15;288(46):32886-96. PubMed, PubMedCentral, CrossRef
  20. van Loosdregt J, Fleskens V, Fu J, Brenkman AB, Bekker CP, Pals CE, Meerding J, Berkers CR, Barbi J, Gröne A, Sijts AJ, Maurice MM, Kalkhoven E, Prakken BJ, Ovaa H, Pan F, Zaiss DM, Coffer PJ. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity. 2013 Aug 22;39(2):259-71. PubMed, PubMedCentral, CrossRef
  21. Gao Y, Koppen A, Rakhshandehroo M, Tasdelen I, van de Graaf SF, van Loosdregt J, van Beekum O, Hamers N, van Leenen D, Berkers CR, Berger R, Holstege FC, Coffer PJ, Brenkman AB, Ovaa H, Kalkhoven E. Early adipogenesis is regulated through USP7-mediated deubiquitination of the histone acetyltransferase TIP60. Nat Commun. 2013;4:2656. PubMed, CrossRef
  22. Wansleben S, Peres J, Hare S, Goding CR, Prince S. T-box transcription factors in cancer biology. Biochim Biophys Acta. 2014 Dec;1846(2):380-91. Review. PubMed, CrossRef
  23. Li J, Ballim D, Rodriguez M, Cui R, Goding CR, Teng H, Prince S. The anti-proliferative function of the TGF-β1 signaling pathway involves the repression of the oncogenic TBX2 by its homologue TBX3. J Biol Chem. 2014 Dec 19;289(51):35633-43. PubMed, PubMedCentral, CrossRef
  24. Krstic M, Macmillan CD, Leong HS, Clifford AG, Souter LH, Dales DW, Postenka CO, Chambers AF, Tuck AB. The transcriptional regulator TBX3 promotes progression from non-invasive to invasive breast cancer. BMC Cancer. 2016 Aug 23;16(1):671. PubMed, PubMedCentral, CrossRef
  25. Deng Q, Wang Q, Zong WY, Zheng DL, Wen YX, Wang KS, Teng XM, Zhang X, Huang J, Han ZG. E2F8 contributes to human hepatocellular carcinoma via regulating cell proliferation. Cancer Res. 2010 Jan 15;70(2):782-91. PubMed, CrossRef
  26. Weijts BG, Bakker WJ, Cornelissen PW, Liang KH, Schaftenaar FH, Westendorp B, de Wolf CA, Paciejewska M, Scheele CL, Kent L, Leone G, Schulte-Merker S, de Bruin A. E2F7 and E2F8 promote angiogenesis through transcriptional activation of VEGFA in cooperation with HIF1. EMBO J. 2012 Oct 3;31(19):3871-84. PubMed, PubMedCentral, CrossRef
  27. Chen HZ, Ouseph MM, Li J, Pécot T, Chokshi V, Kent L, Bae S, Byrne M, Duran C, Comstock G, Trikha P, Mair M, Senapati S, Martin CK, Gandhi S, Wilson N, Liu B, Huang YW, Thompson JC, Raman S, Singh S, Leone M, Machiraju R, Huang K, Mo X, Fernandez S, Kalaszczynska I, Wolgemuth DJ, Sicinski P, Huang T, Jin V, Leone G. Canonical and atypical E2Fs regulate the mammalian endocycle. Nat Cell Biol. 2012 Nov;14(11):1192-202. PubMed, PubMedCentral, CrossRef
  28. Minchenko DO, Prylutska SV, Moenner M, Minchenko OH, Prylutskyy YuI, Schütze C, Ritter U. Effect of C60 fullerene on the expression of ERN1 signaling related genes in human astrocytes. Mat-wiss Werkstofftech. 2013; 44(2-3): 150–155.  CrossRef
  29. Minchenko DO, Spivak MY, Herasymenko RM, Ivanov VK, Tretyakov YD, Minchenko OH. Effect of cerium dioxide nanoparticles on the expression of selected growth and transcription factors in human astrocytes. Mat-wiss Werkstofftech. 2013; 44(2-3): 156-160. CrossRef
  30. Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, Wang ZV, Zorzano A, Hill JA, Jaimovich E, Quest AF, Lavandero S. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol. 2013;301:215-90. Review. PubMed, PubMedCentral, CrossRef
  31. Chevet E, Hetz C, Samali A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov. 2015 Jun;5(6):586-97. Review. PubMed, CrossRef
  32. Dejeans N, Barroso K, Fernandez-Zapico ME, Samali A, Chevet E. Novel roles of the unfolded protein response in the control of tumor development and aggressiveness. Semin Cancer Biol. 2015 Aug;33:67-73.  PubMed, CrossRef
  33. Manié SN, Lebeau J, Chevet E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am J Physiol Cell Physiol. 2014 Nov 15;307(10):C901-7. Review. PubMed, CrossRef
  34. Minchenko OH, Tsymbal DO, Minchenko DO, Moenner M, Kovalevska OV, Lypova NM. Inhibition of kinase and endoribonuclease activity of ERN1/IRE1α affects expression of proliferationrelated genes in U87 glioma cells. Endoplasm Reticul Stress Dis. 2015;2(1):18-29. CrossRef
  35. Minchenko OH, Tsymbal DO, Minchenko DO, Kovalevska OV, Karbovskyi LL, Bikfalvi A.Inhibition of ERN1 signaling enzyme affects hypoxic regulation of the expression of E2F8, EPAS1, HOXC6, ATF3, TBX3 and FOXF1 genes in U87 glioma cells. Ukr Biochem J. 2015 Mar-Apr;87(2):76-87. PubMed, CrossRef
  36. Minchenko OH, Ochiai A, Opentanova IL, Ogura T, Minchenko DO, Caro J, Komisarenko SV, Esumi H. Overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 in the human breast and colon malignant tumors. Biochimie. 2005 Nov;87(11):1005-10. PubMed, CrossRef
  37. Bochkov VN, Philippova M, Oskolkova O, Kadl A, Furnkranz A, Karabeg E, Afonyushkin T, Gruber F, reuss J, Minchenko A, Mechtcheriakova D, Hohensinner P, Rychli K, Wojta J, Resink T, Erne P, Binder BR, Leitinger N. Oxidized Phospholipids Stimulate Angiogenesis Via Autocrine Mechanisms, Implicating a Novel Role for Lipid Oxidation in the Evolution of Atherosclerotic Lesions. Circ Res. 2006; 99(8): 900-908. CrossRef

 


Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.