Ukr.Biochem.J. 2020; Volume 92, Issue 1, Jan-Feb, pp. 5-11


Pattern of expression of immune- and stroma-associated genes in blood of mice with experimental B16 melanoma

G. V. Gerashchenko, I. M. Vagina, Yu. V. Vagin, V. I. Kashuba

Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv;

Received: 30 May 2019; Accepted: 29 November 2019

The interaction between malignant and stromal cells represents a major cross-talk pathway upon carcinogenesis. Cellular elements of the reactive tumor stroma are a heterogeneous population which are represented specifically by cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAM). It is not known whether expression of CAF- and TAM-associated genes could be detected in the peripheral blood of cancer patients to monitor a course of disease. The aim of the study was to assess the relative expression (RE) of cancer-related genes in peripheral blood of mice with experimental melanoma. Quantitative PCR was used to determine RE of 15 genes in the blood of C57BL/6j control mice and mice with injected B16 melanoma cells. The Kruskal-Wallis and the Fischer exact tests with correction on multiple comparisons, according­ to the Benjamini-Hochberg procedure with FDR = 0.2 were used for statistical analysis. Analysis of 15 immune and stromal markers RE showed differentiated expression of several CAF and TAM markers  in mice with experimental melanoma in comparison with the control animals. Thus, CAF markers Acta2, Cxcl14, Fap and TAM markers Cd68, Ccl22 and Ccl17 were significantly upregulated, while Cd4, Cd3 were downregulated. This, together with increased expression of Cox-2 suggested a stable immunosuppressive state of mice with experimental melanomas. The results of the study showed that potential markers of cancer-associated fibroblasts and tumor-associated macrophages in peripheral blood of mice with experimental melanoma could be used for non-invasive detection of melanoma cell progression.

Keywords: , , , ,


  1. McMillin DW, Negri JM, Mitsiades CS. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov. 2013 Mar;12(3):217-28. PubMed, CrossRef
  2. Belli C, Trapani D, Viale G, D’Amico P, Duso BA, Della Vigna P, Orsi F, Curigliano G. Targeting the microenvironment in solid tumors. Cancer Treat Rev. 2018 Apr;65:22-32. PubMed, CrossRef
  3. Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 2016 Aug 11;18(1):84. PubMed, PubMedCentral, CrossRef
  4. Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer. 2017 Feb 1;16(1):31.  PubMed, PubMedCentral, CrossRef
  5. Werb Z, Lu P. The Role of Stroma in Tumor Development. Cancer J. 2015 Jul-Aug;21(4):250-3.  PubMed, PubMedCentral, CrossRef
  6. Raffaghello L, Dazzi F. Classification and biology of tumour associated stromal cells. Immunol Lett. 2015 Dec;168(2):175-82.  PubMed, CrossRef
  7. Mezawa Y, Orimo A. The roles of tumor- and metastasis-promoting carcinoma-associated fibroblasts in human carcinomas. Cell Tissue Res. 2016 Sep;365(3):675-89. PubMed, CrossRef
  8. Erdogan B, Webb DJ. Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 2017 Feb 8;45(1):229-236. PubMed, PubMed, CrossRef
  9. Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K. Fibroblasts in the Tumor Microenvironment: Shield or Spear? Int J Mol Sci. 2018 May 21;19(5). pii: E1532.  PubMed, PubMedCentral, CrossRef
  10. Sazeides C, Le A. Metabolic Relationship between Cancer-Associated Fibroblasts and Cancer Cells. Adv Exp Med Biol. 2018;1063:149-165.  PubMed, CrossRef
  11. Patel AK, Vipparthi K, Thatikonda V, Arun I, Bhattacharjee S, Sharan R, Arun P, Singh S. A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma. Oncogenesis. 2018 Oct 5;7(10):78. PubMed, PubMedCentral, CrossRef
  12. Ni WD, Yang ZT, Cui CA, Cui Y, Fang LY, Xuan YH. Tenascin-C is a potential cancer-associated fibroblasts marker and predicts poor prognosis in prostate cancer. Biochem Biophys Res Commun. 2017 May 6;486(3):607-612.  PubMed, CrossRef
  13. Drev D, Bileck A, Erdem ZN, Mohr T, Timelthaler G, Beer A, Gerner C, Marian B. Proteomic profiling identifies markers for inflammation-related tumor-fibroblast interaction. Clin Proteomics. 2017 Oct 6;14:33. PubMed, PubMedCentral, CrossRef
  14. Augsten M, Sjöberg E, Frings O, Vorrink SU, Frijhoff J, Olsson E, Borg Å, Östman A. Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling for their tumor-supporting properties. Cancer Res. 2014 Jun 1;74(11):2999-3010.  PubMed, CrossRef
  15. Kuzet SE, Gaggioli C. Fibroblast activation in cancer: when seed fertilizes soil. Cell Tissue Res. 2016 Sep;365(3):607-19. PubMed, CrossRef
  16. Gok Yavuz B, Gunaydin G, Gedik ME, Kosemehmetoglu K, Karakoc D, Ozgur F, Guc D. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Sci Rep. 2019 Feb 28;9(1):3172. PubMed, PubMedCentral, CrossRef
  17. Na YR, Je S, Seok SH. Metabolic features of macrophages in inflammatory diseases and cancer. Cancer Lett. 2018 Jan 28;413:46-58. PubMed, CrossRef
  18. Nonnenmacher Y, Hiller K. Biochemistry of proinflammatory macrophage activation. Cell Mol Life Sci. 2018 Jun;75(12):2093-2109. PubMed, PubMedCentral, CrossRef
  19. Netea-Maier RT, Smit JWA, Netea MG. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer Lett. 2018 Jan 28;413:102-109. PubMed, CrossRef
  20. Dutsch-Wicherek M, Kazmierczak W. Creation of a suppressive microenvironment by macrophages and cancer-associated fibroblasts. Front Biosci (Landmark Ed). 2013 Jun 1;18:1003-16. PubMed, CrossRef
  21. Gerashchenko GV, Mankovska OS, Dmitriev AA, Mevs LV, Rosenberg EE, Pikul MV, Marynychenko MV, Gryzodub OP, Stakhovsky EO, Kashuba VI. Expression of epithelial-mesenchymal transition-related genes in prostate tumours. Biopolym Cell. 2017;33(5):335-355. CrossRef
  22. Gerashchenko GV, Grygoruk OV, Kononenko OA, Gryzodub OP, Stakhovsky EO, Kashuba VI. Expression pattern of genes associated with tumor microenvironment in prostate cancer. Exp Oncol. 2018 Dec;40(4):315-322.  PubMed, CrossRef
  23. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57(1):289-300. CrossRef
  24. Hashemi Goradel N, Najafi M, Salehi E, Farhood B, Mortezaee K. Cyclooxygenase-2 in cancer: A review. J Cell Physiol. 2019 May;234(5):5683-5699. PubMed, CrossRef
  25. Garg R, Blando JM, Perez CJ, Lal P, Feldman MD, Smyth EM, Ricciotti E, Grosser T, Benavides F, Kazanietz MG. COX-2 mediates pro-tumorigenic effects of PKCε in prostate cancer. Oncogene. 2018 Aug;37(34):4735-4749. PubMed, PubMedCentral, CrossRef
  26. Agrawal U, Kumari N, Vasudeva P, Mohanty NK, Saxena S. Overexpression of COX2 indicates poor survival in urothelial bladder cancer. Ann Diagn Pathol. 2018 Jun;34:50-55. PubMed, CrossRef
  27. Gately S, Kerbel R. Therapeutic potential of selective cyclooxygenase-2 inhibitors in the management of tumor angiogenesis. Prog Exp Tumor Res. 2003;37:179-92. PubMed, CrossRef
  28. Qiu X, Cheng JC, Chang HM, Leung PC. COX2 and PGE2 mediate EGF-induced E-cadherin-independent human ovarian cancer cell invasion. Endocr Relat Cancer. 2014 Aug;21(4):533-43. PubMed, CrossRef
  29. Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int. 2015 Nov 5;15:106.  PubMed, PubMedCentral, CrossRef
  30. Tong D, Liu Q, Wang LA, Xie Q, Pang J, Huang Y, Wang L, Liu G, Zhang D, Lan W, Jiang J. The roles of the COX2/PGE2/EP axis in therapeutic resistance. Cancer Metastasis Rev. 2018;37(2-3):355-368. PubMed, CrossRef
  31. Gan L, Qiu Z, Huang J, Li Y, Huang H, Xiang T, Wan J, Hui T, Lin Y, Li H, Ren G. Cyclooxygenase-2 in tumor-associated macrophages promotes metastatic potential of breast cancer cells through Akt pathway. Int J Biol Sci. 2016;12(12):1533-1543. PubMed, PubMed,CrossRef
  32. Su CW, Zhang Y, Zhu YT. Stromal COX-2 signaling are correlated with colorectalcancer: A review. Crit Rev Oncol Hematol. 2016;107:33-38. PubMed, CrossRef
  33. Gerashchenko GV, Kononenko OA, Bondarenko YuM, Stakhovsky EO, Kashuba VI. Expression patterns of genes that regulate lipid metabolism in prostate tumors. Biopolym Cell. 2018;34(6):445-460. CrossRef
  34. Wang D, Yang L, Yue D, Cao L, Li L, Wang D, Ping Y, Shen Z, Zheng Y, Wang L, Zhang Y. Macrophage-derived CCL22 promotes an immunosuppressive tumormicroenvironment via IL-8 in malignant pleural effusion. Cancer Lett. 2019;452:244-253. PubMed, CrossRef
  35. Maolake A, Izumi K, Shigehara K, Natsagdorj A, Iwamoto H, Kadomoto S, Takezawa Y, Machioka K, Narimoto K, Namiki M, Lin WJ, Wufuer G, Mizokami A. Tumor-associated macrophages promote prostate cancer migration through activationof the CCL22-CCR4 axis. Oncotarget. 2017;8(6):9739-9751. PubMed, PubMed, CrossRef
  36. Furudate S, Fujimura T, Kambayashi Y, Kakizaki A, Hidaka T, Aiba S. Immunomodulatory Effect of Imiquimod Through CCL22 Produced by Tumor-associated Macrophages in B16F10 Melanomas. Anticancer Res. 2017;37(7):3461-3471. PubMed, CrossRef
  37. Takahashi H, Sakakura K, Kudo T, Toyoda M, Kaira K, Oyama T, Chikamatsu K. Cancer-associated fibroblasts promote an immunosuppressive microenvironmentthrough the induction and accumulation of protumoral macrophages. Oncotarget. 2017;8(5):8633-8647. PubMed, PubMed, CrossRef
  38. Gerashchenko GV, Vagina IM, Vagin YuV, Tkachuk ZYu, Kashuba VI. Expression pattern of immune- and cancer-associated genes in peripheral blood of mice bearing melanoma cells. Biopolym Cell. 2019;35(4): 313-320. CrossRef
  39. Turrini R, Pabois A, Xenarios I, Coukos G, Delaloye JF, Doucey MA. TIE-2 expressing monocytes in human cancers. Oncoimmunology. 2017;6(4):e1303585. PubMed, PubMed, CrossRef
  40. Tulotta C, Ottewell P. The role of IL-1B in breast cancer bone metastasis. Endocr Relat Cancer. 2018;25(7):R421-R434. PubMed, PubMed, CrossRef
  41. Poh AR, Ernst M. Targeting Macrophages in Cancer: From Bench to Bedside. Front Oncol. 2018;8:49. PubMed, PubMed, CrossRef
  42. García SA, Weitz J, Schölch S. Circulating Tumor Cells. Methods Mol Biol. 2018;1692:213-219. PubMed, CrossRef
  43. Dasgupta A, Lim AR, Ghajar CM. Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol Oncol. 2017;11(1):40-61. PubMed, PubMed, CrossRef
  44. Ao Z, Shah SH, Machlin LM, Parajuli R, Miller PC, Rawal S, Williams AJ, Cote RJ, Lippman ME, Datar RH, El-Ashry D. Identification of Cancer-Associated Fibroblasts in Circulating Blood from Patients with Metastatic Breast Cancer. Cancer Res. 2015;75(22):4681-7.  PubMed, CrossRef
  45. McCarthy JB, El-Ashry D, Turley EA. Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression. Front Cell Dev Biol. 2018;6:48. PubMed, PubMed, CrossRef
  46. Gerashchenko GV, Chashchina LI, Rynditch AV, Kashuba VI. The gene expression pattern as a tool for assessment of components of microenvironment and response to anti-cancer therapy of prostate tumors. Dopov Nac Akad Nauk Ukr. 2019;4:86-93. CrossRef
  47. Ogawa M, LaRue AC, Drake CJ. Hematopoietic origin of fibroblasts/myofibroblasts: Its pathophysiologic implications. Blood. 2006;108(9):2893-2896. PubMed, CrossRef
  48. LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech. 2018;11(4). pii: dmm029447. PubMed, PubMedCentral, CrossRef
  49. Hadrup S, Donia M, Thor Straten P. Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenviron. 2013;6(2):123-33. PubMed, PubMedCentral, CrossRef

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.